Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,952 Bytes
a1739b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import torch
import tqdm
import numpy as np
from diffusers import DiffusionPipeline
from diffusers.utils import BaseOutput
import matplotlib
def colorize_depth(depth, cmap="Spectral"):
# colorize
cm = matplotlib.colormaps[cmap]
# (B, N, H, W, 3)
depth_colored = cm(depth, bytes=False)[..., 0:3] # value from 0 to 1
return depth_colored
class DAVOutput(BaseOutput):
r"""
Output class for zero-shot text-to-video pipeline.
Args:
frames (`[List[PIL.Image.Image]`, `np.ndarray`]):
List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
num_channels)`.
"""
disparity: np.ndarray
disparity_colored: np.ndarray
image: np.ndarray
class DAVPipeline(DiffusionPipeline):
def __init__(self, vae, unet, unet_interp, scheduler):
super().__init__()
self.register_modules(
vae=vae, unet=unet, unet_interp=unet_interp, scheduler=scheduler
)
def encode(self, input):
num_frames = input.shape[1]
input = input.flatten(0, 1)
latent = self.vae.encode(input.to(self.vae.dtype)).latent_dist.mode()
latent = latent * self.vae.config.scaling_factor
latent = latent.reshape(-1, num_frames, *latent.shape[1:])
return latent
def decode(self, latents, decode_chunk_size=16):
# [batch, frames, channels, height, width] -> [batch*frames, channels, height, width]
num_frames = latents.shape[1]
latents = latents.flatten(0, 1)
latents = latents / self.vae.config.scaling_factor
# decode decode_chunk_size frames at a time to avoid OOM
frames = []
for i in range(0, latents.shape[0], decode_chunk_size):
num_frames_in = latents[i : i + decode_chunk_size].shape[0]
frame = self.vae.decode(
latents[i : i + decode_chunk_size].to(self.vae.dtype),
num_frames=num_frames_in,
).sample
frames.append(frame)
frames = torch.cat(frames, dim=0)
# [batch, frames, channels, height, width]
frames = frames.reshape(-1, num_frames, *frames.shape[1:])
return frames.to(torch.float32)
def single_infer(self, rgb, position_ids=None, num_inference_steps=None):
rgb_latent = self.encode(rgb)
noise_latent = torch.randn_like(rgb_latent)
self.scheduler.set_timesteps(num_inference_steps, device=rgb.device)
timesteps = self.scheduler.timesteps
image_embeddings = torch.zeros((noise_latent.shape[0], 1, 1024)).to(
noise_latent
)
for i, t in enumerate(timesteps):
latent_model_input = noise_latent
latent_model_input = torch.cat([latent_model_input, rgb_latent], dim=2)
# [batch_size, num_frame, 4, h, w]
model_output = self.unet(
latent_model_input,
t,
encoder_hidden_states=image_embeddings,
position_ids=position_ids,
).sample
# compute the previous noisy sample x_t -> x_t-1
noise_latent = self.scheduler.step(
model_output, t, noise_latent
).prev_sample
return noise_latent
def single_interp_infer(
self, rgb, masked_depth_latent, mask, num_inference_steps=None
):
rgb_latent = self.encode(rgb)
noise_latent = torch.randn_like(rgb_latent)
self.scheduler.set_timesteps(num_inference_steps, device=rgb.device)
timesteps = self.scheduler.timesteps
image_embeddings = torch.zeros((noise_latent.shape[0], 1, 1024)).to(
noise_latent
)
for i, t in enumerate(timesteps):
latent_model_input = noise_latent
latent_model_input = torch.cat(
[latent_model_input, rgb_latent, masked_depth_latent, mask], dim=2
)
# [batch_size, num_frame, 4, h, w]
model_output = self.unet_interp(
latent_model_input, t, encoder_hidden_states=image_embeddings
).sample
# compute the previous noisy sample x_t -> x_t-1
noise_latent = self.scheduler.step(
model_output, t, noise_latent
).prev_sample
return noise_latent
def __call__(
self,
image,
num_frames,
num_overlap_frames,
num_interp_frames,
decode_chunk_size,
num_inference_steps,
):
self.vae.to(dtype=torch.float16)
# (1, N, 3, H, W)
image = image.unsqueeze(0)
B, N = image.shape[:2]
rgb = image * 2 - 1 # [-1, 1]
if N <= num_frames or N <= num_interp_frames + 2 - num_overlap_frames:
depth_latent = self.single_infer(
rgb, num_inference_steps=num_inference_steps
)
else:
assert 2 <= num_overlap_frames <= (num_interp_frames + 2 + 1) // 2
assert num_frames % 2 == 0
key_frame_indices = []
for i in range(0, N, num_interp_frames + 2 - num_overlap_frames):
if (
i + num_interp_frames + 1 >= N
or len(key_frame_indices) >= num_frames
):
break
key_frame_indices.append(i)
key_frame_indices.append(i + num_interp_frames + 1)
key_frame_indices = torch.tensor(key_frame_indices, device=rgb.device)
sorted_key_frame_indices, origin_indices = torch.sort(key_frame_indices)
key_rgb = rgb[:, sorted_key_frame_indices]
key_depth_latent = self.single_infer(
key_rgb,
sorted_key_frame_indices.unsqueeze(0).repeat(B, 1),
num_inference_steps=num_inference_steps,
)
key_depth_latent = key_depth_latent[:, origin_indices]
torch.cuda.empty_cache()
depth_latent = []
pre_latent = None
for i in tqdm.tqdm(range(0, len(key_frame_indices), 2)):
frame1 = key_depth_latent[:, i]
frame2 = key_depth_latent[:, i + 1]
masked_depth_latent = torch.zeros(
(B, num_interp_frames + 2, *key_depth_latent.shape[2:])
).to(key_depth_latent)
masked_depth_latent[:, 0] = frame1
masked_depth_latent[:, -1] = frame2
mask = torch.zeros_like(masked_depth_latent)
mask[:, [0, -1]] = 1.0
latent = self.single_interp_infer(
rgb[:, key_frame_indices[i] : key_frame_indices[i + 1] + 1],
masked_depth_latent,
mask,
num_inference_steps=num_inference_steps,
)
latent = latent[:, 1:-1]
if pre_latent is not None:
overlap_a = pre_latent[
:, pre_latent.shape[1] - (num_overlap_frames - 2) :
]
overlap_b = latent[:, : (num_overlap_frames - 2)]
ratio = (
torch.linspace(0, 1, num_overlap_frames - 2)
.to(overlap_a)
.view(1, -1, 1, 1, 1)
)
overlap = overlap_a * (1 - ratio) + overlap_b * ratio
pre_latent[:, pre_latent.shape[1] - (num_overlap_frames - 2) :] = (
overlap
)
depth_latent.append(pre_latent)
pre_latent = latent[:, (num_overlap_frames - 2) if i > 0 else 0 :]
torch.cuda.empty_cache()
depth_latent.append(pre_latent)
depth_latent = torch.cat(depth_latent, dim=1)
# dicard the first and last key frames
image = image[:, key_frame_indices[0] + 1 : key_frame_indices[-1]]
assert depth_latent.shape[1] == image.shape[1]
disparity = self.decode(depth_latent, decode_chunk_size=decode_chunk_size)
disparity = disparity.mean(dim=2, keepdim=False)
disparity = torch.clamp(disparity * 0.5 + 0.5, 0.0, 1.0)
# (N, H, W)
disparity = disparity.squeeze(0)
# (N, H, W, 3)
mid_d, max_d = disparity.min(), disparity.max()
disparity_colored = torch.clamp((max_d - disparity) / (max_d - mid_d), 0.0, 1.0)
disparity_colored = colorize_depth(disparity_colored.cpu().numpy())
disparity_colored = (disparity_colored * 255).astype(np.uint8)
image = image.squeeze(0).permute(0, 2, 3, 1).cpu().numpy()
image = (image * 255).astype(np.uint8)
disparity = disparity.cpu().numpy()
return DAVOutput(
disparity=disparity,
disparity_colored=disparity_colored,
image=image,
)
|