Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,209 +1,102 @@
|
|
1 |
-
from typing import Dict, Optional, Tuple, Union
|
2 |
-
|
3 |
-
from transformers.models.bark import BarkSemanticModel, BarkCoarseModel, BarkFineModel, BarkPreTrainedModel
|
4 |
-
from transformers.models.bark.generation_configuration_bark import (
|
5 |
-
BarkCoarseGenerationConfig,
|
6 |
-
BarkFineGenerationConfig,
|
7 |
-
BarkSemanticGenerationConfig,
|
8 |
-
)
|
9 |
-
from transformers import BarkConfig, AutoModel
|
10 |
-
from transformers.modeling_utils import get_parameter_device
|
11 |
-
from transformers.utils import (
|
12 |
-
is_accelerate_available,
|
13 |
-
)
|
14 |
-
|
15 |
import torch
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
- With a *semantic_*, *coarse_*, *fine_* prefix, they will be input for the `generate` method of the
|
118 |
-
semantic, coarse and fine respectively. It has the priority over the keywords without a prefix.
|
119 |
-
|
120 |
-
This means you can, for example, specify a generation strategy for all sub-models except one.
|
121 |
-
Returns:
|
122 |
-
torch.LongTensor: Output generated audio.
|
123 |
-
|
124 |
-
Example:
|
125 |
-
|
126 |
-
```python
|
127 |
-
>>> from transformers import AutoProcessor, BarkModel
|
128 |
-
|
129 |
-
>>> processor = AutoProcessor.from_pretrained("suno/bark-small")
|
130 |
-
>>> model = BarkModel.from_pretrained("suno/bark-small")
|
131 |
-
|
132 |
-
>>> # To add a voice preset, you can pass `voice_preset` to `BarkProcessor.__call__(...)`
|
133 |
-
>>> voice_preset = "v2/en_speaker_6"
|
134 |
-
|
135 |
-
>>> inputs = processor("Hello, my dog is cute, I need him in my life", voice_preset=voice_preset)
|
136 |
-
|
137 |
-
>>> audio_array = model.generate(**inputs, semantic_max_new_tokens=100)
|
138 |
-
>>> audio_array = audio_array.cpu().numpy().squeeze()
|
139 |
-
```
|
140 |
-
"""
|
141 |
-
# TODO (joao):workaround until nested generation config is compatible with PreTrained Model
|
142 |
-
# todo: dict
|
143 |
-
semantic_generation_config = BarkSemanticGenerationConfig(**self.generation_config.semantic_config)
|
144 |
-
coarse_generation_config = BarkCoarseGenerationConfig(**self.generation_config.coarse_acoustics_config)
|
145 |
-
fine_generation_config = BarkFineGenerationConfig(**self.generation_config.fine_acoustics_config)
|
146 |
-
|
147 |
-
kwargs_semantic = {
|
148 |
-
# if "attention_mask" is set, it should not be passed to CoarseModel and FineModel
|
149 |
-
"attention_mask": kwargs.pop("attention_mask", None)
|
150 |
-
}
|
151 |
-
kwargs_coarse = {}
|
152 |
-
kwargs_fine = {}
|
153 |
-
for key, value in kwargs.items():
|
154 |
-
if key.startswith("semantic_"):
|
155 |
-
key = key[len("semantic_") :]
|
156 |
-
kwargs_semantic[key] = value
|
157 |
-
elif key.startswith("coarse_"):
|
158 |
-
key = key[len("coarse_") :]
|
159 |
-
kwargs_coarse[key] = value
|
160 |
-
elif key.startswith("fine_"):
|
161 |
-
key = key[len("fine_") :]
|
162 |
-
kwargs_fine[key] = value
|
163 |
-
else:
|
164 |
-
# If the key is already in a specific config, then it's been set with a
|
165 |
-
# submodules specific value and we don't override
|
166 |
-
if key not in kwargs_semantic:
|
167 |
-
kwargs_semantic[key] = value
|
168 |
-
if key not in kwargs_coarse:
|
169 |
-
kwargs_coarse[key] = value
|
170 |
-
if key not in kwargs_fine:
|
171 |
-
kwargs_fine[key] = value
|
172 |
-
|
173 |
-
# 1. Generate from the semantic model
|
174 |
-
semantic_output = self.semantic.generate(
|
175 |
-
input_ids,
|
176 |
-
history_prompt=history_prompt,
|
177 |
-
semantic_generation_config=semantic_generation_config,
|
178 |
-
**kwargs_semantic,
|
179 |
-
)
|
180 |
-
|
181 |
-
# 2. Generate from the coarse model
|
182 |
-
coarse_output = self.coarse_acoustics.generate(
|
183 |
-
semantic_output,
|
184 |
-
history_prompt=history_prompt,
|
185 |
-
semantic_generation_config=semantic_generation_config,
|
186 |
-
coarse_generation_config=coarse_generation_config,
|
187 |
-
codebook_size=self.generation_config.codebook_size,
|
188 |
-
**kwargs_coarse,
|
189 |
-
)
|
190 |
-
|
191 |
-
# 3. "generate" from the fine model
|
192 |
-
output = self.fine_acoustics.generate(
|
193 |
-
coarse_output,
|
194 |
-
history_prompt=history_prompt,
|
195 |
-
semantic_generation_config=semantic_generation_config,
|
196 |
-
coarse_generation_config=coarse_generation_config,
|
197 |
-
fine_generation_config=fine_generation_config,
|
198 |
-
codebook_size=self.generation_config.codebook_size,
|
199 |
-
**kwargs_fine,
|
200 |
-
)
|
201 |
-
|
202 |
-
if getattr(self, "fine_acoustics_hook", None) is not None:
|
203 |
-
# Manually offload fine_acoustics to CPU
|
204 |
-
# and load codec_model to GPU
|
205 |
-
# since bark doesn't use codec_model forward pass
|
206 |
-
self.fine_acoustics_hook.offload()
|
207 |
-
self.codec_model = self.codec_model.to(self.device)
|
208 |
-
|
209 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from threading import Thread
|
3 |
+
|
4 |
+
from transformers import AutoProcessor
|
5 |
+
from transformers import set_seed
|
6 |
+
|
7 |
+
from vocos_bark import BarkModel
|
8 |
+
from scipy.io.wavfile import write
|
9 |
+
from pydub import AudioSegment
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
import os
|
14 |
+
import gradio as gr
|
15 |
+
import uuid
|
16 |
+
import io
|
17 |
+
from vocos import Vocos
|
18 |
+
|
19 |
+
import os
|
20 |
+
os.environ["GRADIO_TEMP_DIR"] = "/home/yoach/spaces/tmp"
|
21 |
+
|
22 |
+
|
23 |
+
set_seed(0)
|
24 |
+
|
25 |
+
def _grab_best_device(use_gpu=True):
|
26 |
+
if torch.cuda.device_count() > 0 and use_gpu:
|
27 |
+
device = "cuda"
|
28 |
+
else:
|
29 |
+
device = "cpu"
|
30 |
+
return device
|
31 |
+
|
32 |
+
device = _grab_best_device()
|
33 |
+
|
34 |
+
HUB_PATH = "suno/bark"
|
35 |
+
|
36 |
+
processor = AutoProcessor.from_pretrained(HUB_PATH)
|
37 |
+
|
38 |
+
speaker_embeddings = sorted([key for key in processor.speaker_embeddings.keys() if "speaker" in key])
|
39 |
+
|
40 |
+
SAMPLE_RATE = 24_000
|
41 |
+
|
42 |
+
vocos = Vocos.from_pretrained("hubertsiuzdak/vocos-encodec-24khz-v2").to(device)
|
43 |
+
|
44 |
+
# import model
|
45 |
+
if device == "cpu":
|
46 |
+
bark = BarkModel.from_pretrained(HUB_PATH)
|
47 |
+
else:
|
48 |
+
bark = BarkModel.from_pretrained(HUB_PATH).to(device)
|
49 |
+
bark = bark.to_bettertransformer()
|
50 |
+
|
51 |
+
|
52 |
+
# streaming inference
|
53 |
+
def generate_audio(text, voice_preset = None, lag = 0):
|
54 |
+
if voice_preset not in speaker_embeddings:
|
55 |
+
voice_preset = None
|
56 |
+
|
57 |
+
sentences = [
|
58 |
+
text,
|
59 |
+
]
|
60 |
+
inputs = processor(sentences, voice_preset=voice_preset).to(device)
|
61 |
+
# Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
|
62 |
+
|
63 |
+
fine_output = bark.generate(
|
64 |
+
**inputs, coarse_temperature = 0.8, temperature = 0.5, do_sample=True
|
65 |
+
)
|
66 |
+
|
67 |
+
print("Fine tokens generated")
|
68 |
+
|
69 |
+
with torch.no_grad():
|
70 |
+
|
71 |
+
encodec_waveform = bark.codec_decode(fine_output)
|
72 |
+
|
73 |
+
features = vocos.codes_to_features(fine_output.transpose(0,1))
|
74 |
+
vocos_waveform = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device))
|
75 |
+
|
76 |
+
return (SAMPLE_RATE, encodec_waveform.cpu().squeeze().numpy()), (SAMPLE_RATE, vocos_waveform.cpu().squeeze().numpy())
|
77 |
+
|
78 |
+
|
79 |
+
# Gradio blocks demo
|
80 |
+
with gr.Blocks() as demo_blocks:
|
81 |
+
gr.Markdown("""<h1 align="center">🐶BARK with Vocos</h1>""")
|
82 |
+
gr.HTML("""<h3 style="text-align:center;">📢Vocos-enhanced TTS 🦾! </h3>""")
|
83 |
+
with gr.Group():
|
84 |
+
with gr.Row():
|
85 |
+
inp_text = gr.Textbox(label="What should Bark say?", info="Enter text here")
|
86 |
+
dd = gr.Dropdown(
|
87 |
+
speaker_embeddings,
|
88 |
+
value=None,
|
89 |
+
label="Available voice presets",
|
90 |
+
info="Defaults to no speaker embeddings!"
|
91 |
+
)
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
btn = gr.Button("Bark with Vocos TTS")
|
95 |
+
|
96 |
+
with gr.Row():
|
97 |
+
out_audio_encodec = gr.Audio(type="numpy", autoplay=False, label="original output", show_label=True)
|
98 |
+
out_audio_vocos = gr.Audio(type="numpy", autoplay=False, label="vocos enhanced output", show_label=True)
|
99 |
+
|
100 |
+
btn.click(generate_audio, [inp_text, dd], [out_audio_encodec, out_audio_vocos])
|
101 |
+
|
102 |
+
demo_blocks.queue().launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|