File size: 5,294 Bytes
96094ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930b057
 
 
 
 
 
 
 
 
52ea9a4
 
 
 
930b057
 
 
52ea9a4
 
 
 
 
930b057
 
 
9e064db
 
930b057
 
 
 
 
 
 
 
f251112
 
 
930b057
f251112
930b057
 
f251112
96094ed
 
 
930b057
 
96094ed
 
 
 
 
 
930b057
 
 
 
e4f5d4b
930b057
f251112
 
 
 
 
 
 
96094ed
6747ea1
930b057
 
 
 
 
 
 
4dbd274
930b057
4dbd274
 
 
 
 
 
 
 
 
 
 
f251112
930b057
6747ea1
96094ed
 
 
 
 
 
 
 
930b057
96094ed
930b057
 
 
 
 
 
 
f251112
930b057
 
f251112
 
 
96094ed
 
6747ea1
f251112
 
6747ea1
930b057
 
 
 
 
 
 
 
 
 
96094ed
930b057
f251112
96094ed
5b1172f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch

from transformers import pipeline

import numpy as np
import gradio as gr

def _grab_best_device(use_gpu=True):
    if torch.cuda.device_count() > 0 and use_gpu:
        device = "cuda"
    else:
        device = "cpu"
    return device

device = _grab_best_device()

default_model_per_language = {
    "english": "kakao-enterprise/vits-ljs",
    "spanish": "facebook/mms-tts-spa",
    "tamil": "facebook/mms-tts-tam"
}

models_per_language = {
    "english": [
        "ylacombe/vits_ljs_irish_male_monospeaker",
        "ylacombe/vits_ljs_irish_male_monospeaker_2",
        "ylacombe/vits_ljs_irish_male_monospeaker_2",
        "ylacombe/vits_ljs_irish_male_2",

        "ylacombe/vits_ljs_welsh_female_monospeaker",
        "ylacombe/vits_ljs_welsh_female_monospeaker_2",
        "ylacombe/vits_ljs_welsh_female_2",

        "ylacombe/vits_ljs_welsh_male_monospeaker",
        "ylacombe/vits_ljs_welsh_male_monospeaker_2",

        "ylacombe/vits_ljs_scottish_female_monospeaker",
        "ylacombe/vits_ljs_scottish_female_2",
    ],
    "spanish": [
        "ylacombe/mms-spa-finetuned-chilean-monospeaker-all",
        "ylacombe/mms-spa-finetuned-chilean-monospeaker",       
    ],
    "tamil": [
        "ylacombe/mms-tam-finetuned-monospeaker-all",
        "ylacombe/mms-tam-finetuned-monospeaker",
    ]
}

HUB_PATH = "ylacombe/vits_ljs_welsh_female_monospeaker"


pipe_dict = {
    "current_model": "ylacombe/vits_ljs_welsh_female_monospeaker",
    "pipe":  pipeline("text-to-speech", model=HUB_PATH, device=0),
    "original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=0),
    "language": "english",
}

title = "# 🐶 VITS"

max_speakers = 15

description = """

"""


# Inference
def generate_audio(text, model_id, language):

    if pipe_dict["language"] != language:
        gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}")
        pipe_dict["language"] = language
        pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=0)
    
    if pipe_dict["current_model"] != model_id:
        gr.Warning("Model has changed - loading new model")
        pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=0)
        pipe_dict["current_model"] = model_id

    num_speakers = pipe_dict["pipe"].model.config.num_speakers

    out = []
    # first generate original model result
    output = pipe_dict["original_pipe"](text)
    output =  gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True,
                               visible=True)
    out.append(output)
    
    
    if num_speakers>1:
        for i in range(min(num_speakers, max_speakers - 1)):
            forward_params = {"speaker_id": i}
            output = pipe_dict["pipe"](text, forward_params=forward_params)
            
            output =  gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True,
                               visible=True)
            out.append(output)
        out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers))
    else:
        output = pipe_dict["pipe"](text)
        output =  gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True,
                               visible=True)
        out.append(output)
        out.extend([gr.Audio(visible=False)]*(max_speakers-2))
    return out


# Gradio blocks demo    
with gr.Blocks() as demo_blocks:
    gr.Markdown(title)
    gr.Markdown(description)
    with gr.Row():
        with gr.Column():
            inp_text = gr.Textbox(label="Input Text", info="What would you like VITS to synthesise?")
            btn = gr.Button("Generate Audio!")
            language = gr.Dropdown(
                default_model_per_language.keys(),
                value = "english",
                label = "language",
                info = "Language that you want to test"
            )
            
            model_id = gr.Dropdown(
                    models_per_language["english"],
                    value="ylacombe/vits_ljs_welsh_female_monospeaker_2", 
                    label="Model", 
                    info="Model you want to test",
                    )
    
        with gr.Column():
            outputs = []
            for i in range(max_speakers):
                out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False)
                outputs.append(out_audio)

    language.change(lambda language: gr.Dropdown(
                    models_per_language[language],
                    value=models_per_language[language][0], 
                    label="Model", 
                    info="Model you want to test",
                    ),
                    language,
                    model_id
                   )
    
    btn.click(generate_audio, [inp_text, model_id, language], outputs)
    

demo_blocks.queue().launch()