from huggingface_hub import snapshot_download from katsu import Katsu from models import build_model import gradio as gr import noisereduce as nr import numpy as np import os import phonemizer import random import spaces import torch import yaml random_texts = {} for lang in ['en', 'ja']: with open(f'{lang}.txt', 'r') as r: random_texts[lang] = [line.strip() for line in r] def get_random_text(voice): if voice[0] == 'j': lang = 'ja' else: lang = 'en' return random.choice(random_texts[lang]) def parens_to_angles(s): return s.replace('(', '«').replace(')', '»') def normalize(text): # TODO: Custom text normalization rules? text = text.replace('Dr.', 'Doctor') text = text.replace('Mr.', 'Mister') text = text.replace('Ms.', 'Miss') text = text.replace('Mrs.', 'Mrs') return parens_to_angles(text) phonemizers = dict( a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True), b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True), j=Katsu() ) def phonemize(text, voice): lang = voice[0] text = normalize(text) ps = phonemizers[lang].phonemize([text]) ps = ps[0] if ps else '' # TODO: Custom phonemization rules? ps = parens_to_angles(ps) # https://en.wiktionary.org/wiki/kokoro#English ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ') ps = ''.join(filter(lambda p: p in VOCAB, ps)) return ps.strip() def length_to_mask(lengths): mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) mask = torch.gt(mask+1, lengths.unsqueeze(1)) return mask def get_vocab(): _pad = "$" _punctuation = ';:,.!?¡¿—…"«»“” ' _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) dicts = {} for i in range(len((symbols))): dicts[symbols[i]] = i return dicts VOCAB = get_vocab() device = 'cuda' if torch.cuda.is_available() else 'cpu' snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN']) config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml'))) model = build_model(config['model_params']) _ = [model[key].eval() for key in model] _ = [model[key].to(device) for key in model] for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items(): assert key in model, key try: model[key].load_state_dict(state_dict) except: state_dict = {k[7:]: v for k, v in state_dict.items()} model[key].load_state_dict(state_dict, strict=False) CHOICES = { '🇺🇸 🚺 American Female 0': 'af0', '🇺🇸 🚺 Bella': 'af1', '🇺🇸 🚺 Nicole': 'af2', '🇺🇸 🚹 Michael': 'am0', '🇺🇸 🚹 Adam': 'am1', '🇬🇧 🚺 British Female 0': 'bf0', '🇬🇧 🚺 British Female 1': 'bf1', '🇬🇧 🚺 British Female 2': 'bf2', '🇬🇧 🚹 British Male 0': 'bm0', '🇬🇧 🚹 British Male 1': 'bm1', '🇬🇧 🚹 British Male 2': 'bm2', '🇬🇧 🚹 British Male 3': 'bm3', '🇯🇵 🚺 Japanese Female 0': 'jf0', } VOICES = {k: torch.load(os.path.join(snapshot, 'voices', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()} np_log_99 = np.log(99) def s_curve(p): if p <= 0: return 0 elif p >= 1: return 1 s = 1 / (1 + np.exp((1-p*2)*np_log_99)) s = (s-0.01) * 50/49 return s SAMPLE_RATE = 24000 @spaces.GPU(duration=10) @torch.no_grad() def forward(text, voice, ps=None, speed=1.0, reduce_noise=0.5, opening_cut=5000, closing_cut=0, ease_in=3000, ease_out=0): ps = ps or phonemize(text, voice) tokens = [i for i in map(VOCAB.get, ps) if i is not None] if not tokens: return (None, '') elif len(tokens) > 510: tokens = tokens[:510] ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens) tokens = torch.LongTensor([[0, *tokens, 0]]).to(device) input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) text_mask = length_to_mask(input_lengths).to(device) bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) d_en = model.bert_encoder(bert_dur).transpose(-1, -2) ref_s = VOICES[voice] s = ref_s[:, 128:] d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) x, _ = model.predictor.lstm(d) duration = model.predictor.duration_proj(x) duration = torch.sigmoid(duration).sum(axis=-1) / speed pred_dur = torch.round(duration.squeeze()).clamp(min=1) pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) c_frame = 0 for i in range(pred_aln_trg.size(0)): pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 c_frame += int(pred_dur[i].data) en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) F0_pred, N_pred = model.predictor.F0Ntrain(en, s) t_en = model.text_encoder(tokens, input_lengths, text_mask) asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) out = model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]) out = out.squeeze().cpu().numpy() if reduce_noise > 0: out = nr.reduce_noise(y=out, sr=SAMPLE_RATE, prop_decrease=reduce_noise, n_fft=512) opening_cut = max(0, int(opening_cut / speed)) if opening_cut > 0: out[:opening_cut] = 0 closing_cut = max(0, int(closing_cut / speed)) if closing_cut > 0: out = out[-closing_cut:] = 0 ease_in = min(int(ease_in / speed), len(out)//2 - opening_cut) for i in range(ease_in): out[i+opening_cut] *= s_curve(i / ease_in) ease_out = min(int(ease_out / speed), len(out)//2 - closing_cut) for i in range(ease_out): out[-i-1-closing_cut] *= s_curve(i / ease_out) return ((SAMPLE_RATE, out), ps) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): text = gr.Textbox(label='Input Text') voice = gr.Dropdown(list(CHOICES.items()), label='Voice') with gr.Row(): random_btn = gr.Button('Random Text', variant='secondary') generate_btn = gr.Button('Generate', variant='primary') random_btn.click(get_random_text, inputs=[voice], outputs=[text]) with gr.Accordion('Input Phonemes', open=False): in_ps = gr.Textbox(show_label=False, info='Override the input text with custom pronunciation. Leave this blank to use the input text instead.') with gr.Row(): clear_btn = gr.ClearButton(in_ps) phonemize_btn = gr.Button('Phonemize Input Text', variant='primary') phonemize_btn.click(phonemize, inputs=[text, voice], outputs=[in_ps]) with gr.Column(): audio = gr.Audio(interactive=False, label='Output Audio') with gr.Accordion('Tokens', open=True): out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio. Same as input phonemes if supplied, excluding unknown characters and truncated to 510 tokens.') with gr.Accordion('Advanced Settings', open=False): with gr.Row(): reduce_noise = gr.Slider(minimum=0, maximum=1, value=0.5, label='Reduce Noise', info='👻 Fix it in post: non-stationary noise reduction via spectral gating.') with gr.Row(): speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label='Speed', info='⚡️ Adjust the speed of the audio. The trim settings below are also auto-scaled by speed.') with gr.Row(): with gr.Column(): opening_cut = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Opening Cut', info='✂️ Zero out this many samples at the start.') with gr.Column(): closing_cut = gr.Slider(minimum=0, maximum=24000, value=0, step=1000, label='Closing Cut', info='✂️ Zero out this many samples at the end.') with gr.Row(): with gr.Column(): ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='Ease In', info='🚀 Ease in for this many samples, after opening cut.') with gr.Column(): ease_out = gr.Slider(minimum=0, maximum=24000, value=0, step=1000, label='Ease Out', info='📐 Ease out for this many samples, before closing cut.') generate_btn.click(forward, inputs=[text, voice, in_ps, speed, reduce_noise, opening_cut, closing_cut, ease_in, ease_out], outputs=[audio, out_ps]) if __name__ == '__main__': demo.launch()