from huggingface_hub import snapshot_download from katsu import Katsu from models import build_model import gradio as gr import numpy as np import os import phonemizer import pypdf import random import re import spaces import torch import yaml CUDA_AVAILABLE = torch.cuda.is_available() snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN']) config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml'))) models = {device: build_model(config['model_params'], device) for device in ['cpu'] + (['cuda'] if CUDA_AVAILABLE else [])} for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items(): for device in models: assert key in models[device], key try: models[device][key].load_state_dict(state_dict) except: state_dict = {k[7:]: v for k, v in state_dict.items()} models[device][key].load_state_dict(state_dict, strict=False) PARAM_COUNT = sum(p.numel() for value in models['cpu'].values() for p in value.parameters()) assert PARAM_COUNT < 82_000_000, PARAM_COUNT random_texts = {} for lang in ['en', 'ja']: with open(f'{lang}.txt', 'r') as r: random_texts[lang] = [line.strip() for line in r] def get_random_text(voice): if voice[0] == 'j': lang = 'ja' else: lang = 'en' return random.choice(random_texts[lang]) def parens_to_angles(s): return s.replace('(', '«').replace(')', '»') def split_num(num): num = num.group() if '.' in num: # Decimal a, b = num.split('.') return ' point '.join([a, ' '.join(b)]) elif ':' in num: # Time h, m = [int(n) for n in num.split(':')] if m == 0: return f"{h} o'clock" elif m < 10: return f'{h} oh {m}' return f'{h} {m}' # Year year = int(num[:4]) if year < 1100 or year % 1000 < 10: return num left, right = num[:2], int(num[2:4]) s = 's' if num.endswith('s') else '' if 100 <= year % 1000 <= 999: if right == 0: return f'{left} hundred{s}' elif right < 10: return f'{left} oh {right}{s}' return f'{left} {right}{s}' def normalize(text): # TODO: Custom text normalization rules? text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text) text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text) text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text) text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text) text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text) text = re.sub(r'\b([Yy])eah\b', r"\1e'a", text) text = text.replace(chr(8216), "'").replace(chr(8217), "'") text = text.replace(chr(8220), '"').replace(chr(8221), '"') text = re.sub(r'[^\S \n]', ' ', text) text = re.sub(r' +', ' ', text) text = re.sub(r'(?<=\n) +(?=\n)', '', text) text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?= 1: return 1 s = 1 / (1 + np.exp((1-p*2)*np_log_99)) s = (s-0.01) * 50/49 return s SAMPLE_RATE = 24000 @torch.no_grad() def forward(tokens, voice, speed, device='cpu'): ref_s = VOICES[device][voice][len(tokens)] tokens = torch.LongTensor([[0, *tokens, 0]]).to(device) input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) text_mask = length_to_mask(input_lengths).to(device) bert_dur = models[device].bert(tokens, attention_mask=(~text_mask).int()) d_en = models[device].bert_encoder(bert_dur).transpose(-1, -2) s = ref_s[:, 128:] d = models[device].predictor.text_encoder(d_en, s, input_lengths, text_mask) x, _ = models[device].predictor.lstm(d) duration = models[device].predictor.duration_proj(x) duration = torch.sigmoid(duration).sum(axis=-1) / speed pred_dur = torch.round(duration).clamp(min=1).long() pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item()) c_frame = 0 for i in range(pred_aln_trg.size(0)): pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1 c_frame += pred_dur[0,i].item() en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device) F0_pred, N_pred = models[device].predictor.F0Ntrain(en, s) t_en = models[device].text_encoder(tokens, input_lengths, text_mask) asr = t_en @ pred_aln_trg.unsqueeze(0).to(device) return models[device].decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy() @spaces.GPU(duration=10) def forward_gpu(tokens, voice, speed): return forward(tokens, voice, speed, device='cuda') def generate(text, voice, ps=None, speed=1, reduce_noise=None, opening_cut=4000, closing_cut=2000, ease_in=3000, ease_out=1000, pad_before=None, pad_after=None, use_gpu=None): if voice not in VOICES: # Ensure stability for https://huggingface.co./spaces/Pendrokar/TTS-Spaces-Arena voice = 'af' ps = ps or phonemize(text, voice) tokens = tokenize(ps) if not tokens: return (None, '') elif len(tokens) > 510: tokens = tokens[:510] ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens) try: if use_gpu or (use_gpu is None and len(ps) > 99): out = forward_gpu(tokens, voice, speed) else: out = forward(tokens, voice, speed) except gr.exceptions.Error as e: raise gr.Error(e) return (None, '') opening_cut = int(opening_cut / speed) if opening_cut > 0: out = out[opening_cut:] closing_cut = int(closing_cut / speed) if closing_cut > 0: out = out[:-closing_cut] ease_in = min(int(ease_in / speed), len(out)//2) for i in range(ease_in): out[i] *= s_curve(i / ease_in) ease_out = min(int(ease_out / speed), len(out)//2) for i in range(ease_out): out[-i-1] *= s_curve(i / ease_out) return ((SAMPLE_RATE, out), ps) def toggle_autoplay(autoplay): return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay) with gr.Blocks() as basic_tts: with gr.Row(): with gr.Column(): text = gr.Textbox(label='Input Text', info='Generate speech for one segment of text using Kokoro, a TTS model with 80 million parameters.') voice = gr.Dropdown(list(CHOICES.items()), label='Voice', info='⭐ Starred voices are more stable. 🧪 Experimental voices are less stable.') with gr.Row(): random_btn = gr.Button('Random Text', variant='secondary') generate_btn = gr.Button('Generate', variant='primary') random_btn.click(get_random_text, inputs=[voice], outputs=[text]) with gr.Accordion('Input Tokens', open=False): in_ps = gr.Textbox(show_label=False, info='Override the input text with custom phonemes. Leave this blank to automatically tokenize the input text instead.') with gr.Row(): clear_btn = gr.ClearButton(in_ps) phonemize_btn = gr.Button('Tokenize Input Text', variant='primary') phonemize_btn.click(phonemize, inputs=[text, voice], outputs=[in_ps]) with gr.Column(): audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True) autoplay = gr.Checkbox(value=True, label='Autoplay') autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio]) with gr.Accordion('Output Tokens', open=True): out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 allowed. Same as input tokens if supplied, excluding unknowns.') with gr.Row(): use_gpu = gr.Radio( [('CPU', False), ('Force GPU', True), ('Dynamic', None)], value=None if CUDA_AVAILABLE else False, label='⚙️ Hardware', info='CPU: unlimited, ~faster <100 tokens. GPU: limited usage quota, ~faster 100+ tokens. Dynamic: switches based on # of tokens.', interactive=CUDA_AVAILABLE ) with gr.Accordion('Audio Settings', open=False): with gr.Row(): speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='⚡️ Speed', info='Adjust the speed of the audio; the settings below are auto-scaled by speed') with gr.Row(): with gr.Column(): opening_cut = gr.Slider(minimum=0, maximum=24000, value=4000, step=1000, label='✂️ Opening Cut', info='Cut samples from the start') with gr.Column(): closing_cut = gr.Slider(minimum=0, maximum=24000, value=2000, step=1000, label='🎬 Closing Cut', info='Cut samples from the end') with gr.Row(): with gr.Column(): ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='🎢 Ease In', info='Ease in samples, after opening cut') with gr.Column(): ease_out = gr.Slider(minimum=0, maximum=24000, value=1000, step=1000, label='🛝 Ease Out', info='Ease out samples, before closing cut') text.submit(generate, inputs=[text, voice, in_ps, None, speed, opening_cut, closing_cut, ease_in, ease_out, None, None, use_gpu], outputs=[audio, out_ps]) generate_btn.click(generate, inputs=[text, voice, in_ps, None, speed, opening_cut, closing_cut, ease_in, ease_out, None, None, use_gpu], outputs=[audio, out_ps]) @torch.no_grad() def lf_forward(token_lists, voice, speed, device='cpu'): voicepack = VOICES[device][voice] outs = [] for tokens in token_lists: ref_s = voicepack[len(tokens)] s = ref_s[:, 128:] tokens = torch.LongTensor([[0, *tokens, 0]]).to(device) input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) text_mask = length_to_mask(input_lengths).to(device) bert_dur = models[device].bert(tokens, attention_mask=(~text_mask).int()) d_en = models[device].bert_encoder(bert_dur).transpose(-1, -2) d = models[device].predictor.text_encoder(d_en, s, input_lengths, text_mask) x, _ = models[device].predictor.lstm(d) duration = models[device].predictor.duration_proj(x) duration = torch.sigmoid(duration).sum(axis=-1) / speed pred_dur = torch.round(duration).clamp(min=1).long() pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item()) c_frame = 0 for i in range(pred_aln_trg.size(0)): pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1 c_frame += pred_dur[0,i].item() en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device) F0_pred, N_pred = models[device].predictor.F0Ntrain(en, s) t_en = models[device].text_encoder(tokens, input_lengths, text_mask) asr = t_en @ pred_aln_trg.unsqueeze(0).to(device) outs.append(models[device].decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()) return outs @spaces.GPU def lf_forward_gpu(token_lists, voice, speed): return lf_forward(token_lists, voice, speed, device='cuda') def resplit_strings(arr): # Handle edge cases if not arr: return '', '' if len(arr) == 1: return arr[0], '' # Try each possible split point min_diff = float('inf') best_split = 0 # Calculate lengths when joined with spaces lengths = [len(s) for s in arr] spaces = len(arr) - 1 # Total spaces needed # Try each split point left_len = 0 right_len = sum(lengths) + spaces for i in range(1, len(arr)): # Add current word and space to left side left_len += lengths[i-1] + (1 if i > 1 else 0) # Remove current word and space from right side right_len -= lengths[i-1] + 1 diff = abs(left_len - right_len) if diff < min_diff: min_diff = diff best_split = i # Join the strings with the best split point return ' '.join(arr[:best_split]), ' '.join(arr[best_split:]) def recursive_split(text, voice): if not text: return [] tokens = phonemize(text, voice, norm=False) if len(tokens) < 511: return [(text, tokens, len(tokens))] if tokens else [] if ' ' not in text: return [] for punctuation in ['!.?…', ':;', ',—']: splits = re.split(f'(?:(?<=[{punctuation}])|(?<=[{punctuation}]["\'»])|(?<=[{punctuation}]["\'»]["\'»])) ', text) if len(splits) > 1: break else: splits = None splits = splits or text.split(' ') a, b = resplit_strings(splits) return recursive_split(a, voice) + recursive_split(b, voice) def segment_and_tokenize(text, voice, skip_square_brackets=True, newline_split=2): if skip_square_brackets: text = re.sub(r'\[.*?\]', '', text) texts = [t.strip() for t in re.split('\n{'+str(newline_split)+',}', normalize(text))] if newline_split > 0 else [normalize(text)] segments = [row for t in texts for row in recursive_split(t, voice)] return [(i, *row) for i, row in enumerate(segments)] def lf_generate(segments, voice, speed=1.0, opening_cut=4000, closing_cut=2000, ease_in=3000, ease_out=1000, pad_between=10000, use_gpu=True): token_lists = list(map(tokenize, segments['Tokens'])) wavs = [] opening_cut = int(opening_cut / speed) closing_cut = int(closing_cut / speed) pad_between = int(pad_between / speed) batch_size = 100 for i in range(0, len(token_lists), batch_size): try: if use_gpu: outs = lf_forward_gpu(token_lists[i:i+batch_size], voice, speed) else: outs = lf_forward(token_lists[i:i+batch_size], voice, speed) except gr.exceptions.Error as e: if wavs: gr.Warning(str(e)) else: raise gr.Error(e) break for out in outs: if opening_cut > 0: out = out[opening_cut:] if closing_cut > 0: out = out[:-closing_cut] ease_in = min(int(ease_in / speed), len(out)//2) for i in range(ease_in): out[i] *= s_curve(i / ease_in) ease_out = min(int(ease_out / speed), len(out)//2) for i in range(ease_out): out[-i-1] *= s_curve(i / ease_out) if wavs and pad_between > 0: wavs.append(np.zeros(pad_between)) wavs.append(out) return (SAMPLE_RATE, np.concatenate(wavs)) if wavs else None def did_change_segments(segments): x = len(segments) if segments['Length'].any() else 0 return [ gr.Button('Tokenize', variant='secondary' if x else 'primary'), gr.Button(f'Generate x{x}', variant='primary' if x else 'secondary', interactive=x > 0), ] def extract_text(file): if file.endswith('.pdf'): with open(file, 'rb') as rb: pdf_reader = pypdf.PdfReader(rb) return '\n'.join([page.extract_text() for page in pdf_reader.pages]) elif file.endswith('.txt'): with open(file, 'r') as r: return '\n'.join([line for line in r]) return None with gr.Blocks() as lf_tts: with gr.Row(): with gr.Column(): file_input = gr.File(file_types=['.pdf', '.txt'], label='Input File: pdf or txt') text = gr.Textbox(label='Input Text', info='Generate speech in batches of 100 text segments and automatically join them together.') file_input.upload(fn=extract_text, inputs=[file_input], outputs=[text]) voice = gr.Dropdown(list(CHOICES.items()), label='Voice', info='⭐ Starred voices are more stable. 🧪 Experimental voices are less stable.') with gr.Accordion('Text Settings', open=False): skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations') newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0) with gr.Row(): segment_btn = gr.Button('Tokenize', variant='primary') generate_btn = gr.Button('Generate x0', variant='secondary', interactive=False) with gr.Column(): audio = gr.Audio(interactive=False, label='Output Audio') use_gpu = gr.Checkbox(value=CUDA_AVAILABLE, label='Use ZeroGPU', info='🚀 ZeroGPU is fast but has a limited usage quota', interactive=CUDA_AVAILABLE) use_gpu.change( fn=lambda v: gr.Checkbox(value=v, label='Use ZeroGPU', info='🚀 ZeroGPU is fast but has a limited usage quota' if v else '🐌 CPU is slow but unlimited'), inputs=[use_gpu], outputs=[use_gpu] ) with gr.Accordion('Audio Settings', open=False): with gr.Row(): speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='⚡️ Speed', info='Adjust the speed of the audio; the settings below are auto-scaled by speed') with gr.Row(): with gr.Column(): opening_cut = gr.Slider(minimum=0, maximum=24000, value=4000, step=1000, label='✂️ Opening Cut', info='Cut this many samples from the start') with gr.Column(): closing_cut = gr.Slider(minimum=0, maximum=24000, value=2000, step=1000, label='🎬 Closing Cut', info='Cut this many samples from the end') with gr.Row(): with gr.Column(): ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='🎢 Ease In', info='Ease in for this many samples, after opening cut') with gr.Column(): ease_out = gr.Slider(minimum=0, maximum=24000, value=1000, step=1000, label='🛝 Ease Out', info='Ease out for this many samples, before closing cut') with gr.Row(): pad_between = gr.Slider(minimum=0, maximum=24000, value=10000, step=1000, label='🔇 Pad Between', info='How many samples of silence to insert between segments') with gr.Row(): segments = gr.Dataframe(headers=['#', 'Text', 'Tokens', 'Length'], row_count=(1, 'dynamic'), col_count=(4, 'fixed'), label='Segments', interactive=False, wrap=True) segments.change(fn=did_change_segments, inputs=[segments], outputs=[segment_btn, generate_btn]) segment_btn.click(segment_and_tokenize, inputs=[text, voice, skip_square_brackets, newline_split], outputs=[segments]) generate_btn.click(lf_generate, inputs=[segments, voice, speed, opening_cut, closing_cut, ease_in, ease_out, pad_between, use_gpu], outputs=[audio]) with gr.Blocks() as about: gr.Markdown(""" Kokoro is a frontier TTS model for its size. It has 80 million parameters,[1] uses a lean StyleTTS 2 architecture,[2] and was trained on high-quality data. The weights are currently private, but a free public demo is hosted here, at `https://hf.co/spaces/hexgrad/Kokoro-TTS` ### Compute The model was trained on 1x A100-class 80GB instances rented from [Vast.ai](https://cloud.vast.ai/?ref_id=79907).[3]
Vast was chosen over other compute providers due to its competitive on-demand hourly rates.
The average hourly cost for the 1x A100-class 80GB VRAM instances used for training was below $1/hr — around half the quoted rates from other providers. ### Licenses Inference code: MIT
espeak-ng dependency: GPL-3.0[4]
Random English texts: Unknown[5]
Random Japanese texts: CC0 public domain[6] ### References 1. Kokoro parameter count | https://hf.co/spaces/hexgrad/Kokoro-TTS/blob/main/app.py#L31 2. StyleTTS 2 | https://github.com/yl4579/StyleTTS2 3. Vast.ai referral link | https://cloud.vast.ai/?ref_id=79907 4. eSpeak NG | https://github.com/espeak-ng/espeak-ng 5. Quotable Data | https://github.com/quotable-io/data/blob/master/data/quotes.json 6. Common Voice Japanese sentences | https://github.com/common-voice/common-voice/tree/main/server/data/ja ### Contact @rzvzn on Discord """) with gr.Blocks() as faq: gr.Markdown(""" ### Will this be open sourced? There currently isn't a release date scheduled for the weights. The inference code in this space is MIT licensed. The StyleTTS 2 architecture was already published by Li et al, with MIT licensed code and pretrained weights. ### What does it mean for a voice to be unstable? An unstable voice is more likely to stumble or produce unnatural artifacts, especially on short or strange texts. ### CPU faster than ZeroGPU? How? The CPU seems to be a dedicated resource for this Space, whereas the ZeroGPU pool is shared dynamically allocated across all of HF. Obviously the latter demands some kind of queue & allocator system, which inevitably must add latency. For Basic TTS under 100 tokens (~characters), only a few seconds of audio needs to be generated, so the actual compute is not that heavy. For these short bursts, the dedicated CPU can often compute the result faster than the total time it takes for you to: enter the ZeroGPU queue, wait to get allocated, and have a GPU compute and deliver the result. As you move beyond 100 tokens and especially closer to the ~500 token context window, the GPU catches up. And for Long-Form, since batches of 100 segments are processed at a time, the GPU should outspeed the CPU by 1-2 orders of magnitude. """) with gr.Blocks() as api_info: gr.Markdown(""" This Space can be used via API. The following code block can be copied and run in one Google Colab cell. ``` # 1. Install the Gradio Python client !pip install -q gradio_client # 2. Initialize the client from gradio_client import Client client = Client('hexgrad/Kokoro-TTS') # 3. Call the generate endpoint, which returns a pair: an audio path and a string of output phonemes audio_path, out_ps = client.predict( text="How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born.", voice='af', api_name='/generate' ) # 4. Display the audio and print the output phonemes from IPython.display import display, Audio display(Audio(audio_path, autoplay=True)) print(out_ps) ``` Note that this Space and the underlying Kokoro model are both under development and subject to change. Reliability is not guaranteed. Hugging Face and/or Gradio might enforce their own rate limits. """) with gr.Blocks() as version_info: gr.Markdown(""" | Model Version | Date | Validation losses (mel/dur/f0) | | ------- | ---- | ------------------------------ | | v0.19 | 2024 Nov 22 | 0.261 / 0.627 / 1.897 | | v0.16 | 2024 Nov 15 | 0.263 / 0.646 / 1.934 | | v0.14 | 2024 Nov 12 | 0.262 / 0.642 / 1.889 | """) with gr.Blocks() as app: gr.TabbedInterface( [basic_tts, lf_tts, about, faq, api_info, version_info], ['🗣️ Basic TTS', '📖 Long-Form', 'ℹ️ About', '❓ FAQ', '🚀 Gradio API', '📝 Version History'], ) if __name__ == '__main__': app.queue(api_open=True).launch()