Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,6 @@ import pypdf
|
|
9 |
import random
|
10 |
import re
|
11 |
import spaces
|
12 |
-
import threading
|
13 |
import torch
|
14 |
import yaml
|
15 |
|
@@ -323,15 +322,11 @@ with gr.Blocks() as basic_tts:
|
|
323 |
text.submit(generate, inputs=[text, voice, in_ps, speed, trim, use_gpu], outputs=[audio, out_ps])
|
324 |
generate_btn.click(generate, inputs=[text, voice, in_ps, speed, trim, use_gpu], outputs=[audio, out_ps])
|
325 |
|
326 |
-
stop_event = threading.Event()
|
327 |
-
|
328 |
@torch.no_grad()
|
329 |
def lf_forward(token_lists, voices, speed, device='cpu'):
|
330 |
voicepack = torch.mean(torch.stack([VOICES[device][v] for v in voices]), dim=0)
|
331 |
outs = []
|
332 |
for tokens in token_lists:
|
333 |
-
if stop_event.is_set():
|
334 |
-
break
|
335 |
ref_s = voicepack[len(tokens)]
|
336 |
s = ref_s[:, 128:]
|
337 |
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
|
@@ -413,8 +408,6 @@ def segment_and_tokenize(text, voice, skip_square_brackets=True, newline_split=2
|
|
413 |
return [(i, *row) for i, row in enumerate(segments)]
|
414 |
|
415 |
def lf_generate(segments, voice, speed=1, trim=0, pad_between=0, use_gpu=True):
|
416 |
-
global stop_event
|
417 |
-
stop_event.clear()
|
418 |
token_lists = list(map(tokenize, segments['Tokens']))
|
419 |
voices = resolve_voices(voice)
|
420 |
speed = clamp_speed(speed)
|
@@ -447,10 +440,6 @@ def lf_generate(segments, voice, speed=1, trim=0, pad_between=0, use_gpu=True):
|
|
447 |
yield (SAMPLE_RATE, out)
|
448 |
i += bs
|
449 |
|
450 |
-
def lf_stop():
|
451 |
-
global stop_event
|
452 |
-
stop_event.set()
|
453 |
-
|
454 |
def did_change_segments(segments):
|
455 |
x = len(segments) if segments['Length'].any() else 0
|
456 |
return [
|
@@ -471,9 +460,7 @@ def extract_text(file):
|
|
471 |
with gr.Blocks() as lf_tts:
|
472 |
with gr.Row():
|
473 |
with gr.Column():
|
474 |
-
file_input = gr.File(file_types=['.pdf', '.txt'], label='Input File: pdf or txt')
|
475 |
text = gr.Textbox(label='Input Text', info='Generate speech in batches of 100 text segments and automatically join them together')
|
476 |
-
file_input.upload(fn=extract_text, inputs=[file_input], outputs=[text])
|
477 |
with gr.Row():
|
478 |
voice = gr.Dropdown(list(CHOICES.items()), value='af', allow_custom_value=True, label='Voice', info='Starred voices are more stable')
|
479 |
use_gpu = gr.Dropdown(
|
@@ -487,8 +474,9 @@ with gr.Blocks() as lf_tts:
|
|
487 |
skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations')
|
488 |
newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0)
|
489 |
with gr.Row():
|
490 |
-
upload_btn = gr.
|
491 |
segment_btn = gr.Button('Tokenize', variant='primary')
|
|
|
492 |
with gr.Column():
|
493 |
audio_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
|
494 |
with gr.Accordion('Audio Settings', open=True):
|
@@ -502,12 +490,12 @@ with gr.Blocks() as lf_tts:
|
|
502 |
segments = gr.Dataframe(headers=['#', 'Text', 'Tokens', 'Length'], row_count=(1, 'dynamic'), col_count=(4, 'fixed'), label='Segments', interactive=False, wrap=True)
|
503 |
segments.change(fn=did_change_segments, inputs=[segments], outputs=[segment_btn, generate_btn])
|
504 |
segment_btn.click(segment_and_tokenize, inputs=[text, voice, skip_square_brackets, newline_split], outputs=[segments])
|
505 |
-
generate_btn.click(lf_generate, inputs=[segments, voice, speed, trim, pad_between, use_gpu], outputs=[audio_stream])
|
506 |
-
stop_btn.click(
|
507 |
|
508 |
with gr.Blocks() as about:
|
509 |
gr.Markdown('''
|
510 |
-
Kokoro is a frontier TTS model for its size. It has [80 million](https://hf.co/spaces/hexgrad/Kokoro-TTS/blob/main/app.py#
|
511 |
|
512 |
### FAQ
|
513 |
**Will this be open sourced?**<br/>
|
|
|
9 |
import random
|
10 |
import re
|
11 |
import spaces
|
|
|
12 |
import torch
|
13 |
import yaml
|
14 |
|
|
|
322 |
text.submit(generate, inputs=[text, voice, in_ps, speed, trim, use_gpu], outputs=[audio, out_ps])
|
323 |
generate_btn.click(generate, inputs=[text, voice, in_ps, speed, trim, use_gpu], outputs=[audio, out_ps])
|
324 |
|
|
|
|
|
325 |
@torch.no_grad()
|
326 |
def lf_forward(token_lists, voices, speed, device='cpu'):
|
327 |
voicepack = torch.mean(torch.stack([VOICES[device][v] for v in voices]), dim=0)
|
328 |
outs = []
|
329 |
for tokens in token_lists:
|
|
|
|
|
330 |
ref_s = voicepack[len(tokens)]
|
331 |
s = ref_s[:, 128:]
|
332 |
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
|
|
|
408 |
return [(i, *row) for i, row in enumerate(segments)]
|
409 |
|
410 |
def lf_generate(segments, voice, speed=1, trim=0, pad_between=0, use_gpu=True):
|
|
|
|
|
411 |
token_lists = list(map(tokenize, segments['Tokens']))
|
412 |
voices = resolve_voices(voice)
|
413 |
speed = clamp_speed(speed)
|
|
|
440 |
yield (SAMPLE_RATE, out)
|
441 |
i += bs
|
442 |
|
|
|
|
|
|
|
|
|
443 |
def did_change_segments(segments):
|
444 |
x = len(segments) if segments['Length'].any() else 0
|
445 |
return [
|
|
|
460 |
with gr.Blocks() as lf_tts:
|
461 |
with gr.Row():
|
462 |
with gr.Column():
|
|
|
463 |
text = gr.Textbox(label='Input Text', info='Generate speech in batches of 100 text segments and automatically join them together')
|
|
|
464 |
with gr.Row():
|
465 |
voice = gr.Dropdown(list(CHOICES.items()), value='af', allow_custom_value=True, label='Voice', info='Starred voices are more stable')
|
466 |
use_gpu = gr.Dropdown(
|
|
|
474 |
skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations')
|
475 |
newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0)
|
476 |
with gr.Row():
|
477 |
+
upload_btn = gr.UploadButton('Upload txt or pdf', file_types=['text'])
|
478 |
segment_btn = gr.Button('Tokenize', variant='primary')
|
479 |
+
upload_btn.upload(fn=extract_text, inputs=[upload_btn], outputs=[text])
|
480 |
with gr.Column():
|
481 |
audio_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
|
482 |
with gr.Accordion('Audio Settings', open=True):
|
|
|
490 |
segments = gr.Dataframe(headers=['#', 'Text', 'Tokens', 'Length'], row_count=(1, 'dynamic'), col_count=(4, 'fixed'), label='Segments', interactive=False, wrap=True)
|
491 |
segments.change(fn=did_change_segments, inputs=[segments], outputs=[segment_btn, generate_btn])
|
492 |
segment_btn.click(segment_and_tokenize, inputs=[text, voice, skip_square_brackets, newline_split], outputs=[segments])
|
493 |
+
generate_event = generate_btn.click(lf_generate, inputs=[segments, voice, speed, trim, pad_between, use_gpu], outputs=[audio_stream])
|
494 |
+
stop_btn.click(cancels=[generate_event])
|
495 |
|
496 |
with gr.Blocks() as about:
|
497 |
gr.Markdown('''
|
498 |
+
Kokoro is a frontier TTS model for its size. It has [80 million](https://hf.co/spaces/hexgrad/Kokoro-TTS/blob/main/app.py#L31) parameters, uses a lean [StyleTTS 2](https://github.com/yl4579/StyleTTS2) architecture, and was trained on high-quality data. The weights are currently private, but a free public demo is hosted here, at `https://hf.co/spaces/hexgrad/Kokoro-TTS`. The Community tab is open for feature requests, bug reports, etc. For other inquiries, contact `@rzvzn` on Discord.
|
499 |
|
500 |
### FAQ
|
501 |
**Will this be open sourced?**<br/>
|