Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -110,26 +110,36 @@ VOCAB = get_vocab()
|
|
110 |
def tokenize(ps):
|
111 |
return [i for i in map(VOCAB.get, ps) if i is not None]
|
112 |
|
|
|
113 |
CHOICES = {
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
}
|
128 |
VOICES = {k: torch.load(os.path.join(snapshot, 'voices', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()}
|
129 |
-
def get_random_af_voice():
|
130 |
-
# Must be an American female voice to maintain compatability with
|
131 |
-
# https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena
|
132 |
-
return random.choice(['af_zero', 'af_bella'])
|
133 |
|
134 |
np_log_99 = np.log(99)
|
135 |
def s_curve(p):
|
@@ -171,7 +181,8 @@ def forward(tokens, voice, speed):
|
|
171 |
|
172 |
def generate(text, voice, ps=None, speed=1.0, reduce_noise=0.5, opening_cut=4000, closing_cut=2000, ease_in=3000, ease_out=1000, pad_before=5000, pad_after=5000):
|
173 |
if voice not in VOICES:
|
174 |
-
|
|
|
175 |
ps = ps or phonemize(text, voice)
|
176 |
tokens = tokenize(ps)
|
177 |
if not tokens:
|
@@ -210,7 +221,7 @@ with gr.Blocks() as basic_tts:
|
|
210 |
with gr.Row():
|
211 |
with gr.Column():
|
212 |
text = gr.Textbox(label='Input Text')
|
213 |
-
voice = gr.Dropdown(list(CHOICES.items()), label='Voice')
|
214 |
with gr.Row():
|
215 |
random_btn = gr.Button('Random Text', variant='secondary')
|
216 |
generate_btn = gr.Button('Generate', variant='primary')
|
@@ -391,7 +402,7 @@ with gr.Blocks() as lf_tts:
|
|
391 |
file_input = gr.File(file_types=['.pdf', '.txt'], label='Input File: pdf or txt')
|
392 |
text = gr.Textbox(label='Input Text')
|
393 |
file_input.upload(fn=extract_text, inputs=[file_input], outputs=[text])
|
394 |
-
voice = gr.Dropdown(list(CHOICES.items()), label='Voice')
|
395 |
with gr.Accordion('Text Settings', open=False):
|
396 |
skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations.')
|
397 |
newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0)
|
|
|
110 |
def tokenize(ps):
|
111 |
return [i for i in map(VOCAB.get, ps) if i is not None]
|
112 |
|
113 |
+
# 🧪 indicates that voices are experimental
|
114 |
CHOICES = {
|
115 |
+
'🇺🇸 🚺 American Female 0': 'af_0',
|
116 |
+
'🇺🇸 🚺 Alloy 🧪': 'af_alloy',
|
117 |
+
'🇺🇸 🚺 Ava 🧪': 'af_ava',
|
118 |
+
'🇺🇸 🚺 Bella': 'af_bella',
|
119 |
+
'🇺🇸 🚺 Jessica 🧪': 'af_jessica',
|
120 |
+
'🇺🇸 🚺 Nicole': 'af_nicole',
|
121 |
+
'🇺🇸 🚺 Nova 🧪': 'af_nova',
|
122 |
+
'🇺🇸 🚺 River 🧪': 'af_river',
|
123 |
+
'🇺🇸 🚺 Sarah': 'af_sarah',
|
124 |
+
'🇺🇸 🚺 Sky 🧪': 'af_sky',
|
125 |
+
'🇺🇸 🚹 Adam': 'am_adam',
|
126 |
+
'🇺🇸 🚹 Echo 🧪': 'am_echo',
|
127 |
+
'🇺🇸 🚹 Eric 🧪': 'am_eric',
|
128 |
+
'🇺🇸 🚹 Liam 🧪': 'am_liam',
|
129 |
+
'🇺🇸 🚹 Michael': 'am_michael',
|
130 |
+
'🇺🇸 🚹 Onyx 🧪': 'am_onyx',
|
131 |
+
'🇬🇧 🚺 British Female 0': 'bf_0',
|
132 |
+
'🇬🇧 🚺 Alice 🧪': 'bf_alice',
|
133 |
+
'🇬🇧 🚺 Lily 🧪': 'bf_lily',
|
134 |
+
'🇬🇧 🚹 British Male 0': 'bm_0',
|
135 |
+
'🇬🇧 🚹 British Male 1': 'bm_1',
|
136 |
+
'🇬🇧 🚹 British Male 2': 'bm_2',
|
137 |
+
'🇬🇧 🚹 Daniel 🧪': 'bm_daniel',
|
138 |
+
'🇬🇧 🚹 Fable 🧪': 'bm_fable',
|
139 |
+
'🇬🇧 🚹 George 🧪': 'bm_george',
|
140 |
+
'🇯🇵 🚺 Japanese Female 0': 'jf_0',
|
141 |
}
|
142 |
VOICES = {k: torch.load(os.path.join(snapshot, 'voices', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()}
|
|
|
|
|
|
|
|
|
143 |
|
144 |
np_log_99 = np.log(99)
|
145 |
def s_curve(p):
|
|
|
181 |
|
182 |
def generate(text, voice, ps=None, speed=1.0, reduce_noise=0.5, opening_cut=4000, closing_cut=2000, ease_in=3000, ease_out=1000, pad_before=5000, pad_after=5000):
|
183 |
if voice not in VOICES:
|
184 |
+
# Ensure stability for https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena
|
185 |
+
voice = 'af_0'
|
186 |
ps = ps or phonemize(text, voice)
|
187 |
tokens = tokenize(ps)
|
188 |
if not tokens:
|
|
|
221 |
with gr.Row():
|
222 |
with gr.Column():
|
223 |
text = gr.Textbox(label='Input Text')
|
224 |
+
voice = gr.Dropdown(list(CHOICES.items()), label='Voice', info='🧪 Experimental voices may be unstable.')
|
225 |
with gr.Row():
|
226 |
random_btn = gr.Button('Random Text', variant='secondary')
|
227 |
generate_btn = gr.Button('Generate', variant='primary')
|
|
|
402 |
file_input = gr.File(file_types=['.pdf', '.txt'], label='Input File: pdf or txt')
|
403 |
text = gr.Textbox(label='Input Text')
|
404 |
file_input.upload(fn=extract_text, inputs=[file_input], outputs=[text])
|
405 |
+
voice = gr.Dropdown(list(CHOICES.items()), label='Voice', info='🧪 Experimental voices may be unstable.')
|
406 |
with gr.Accordion('Text Settings', open=False):
|
407 |
skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations.')
|
408 |
newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0)
|