File size: 30,635 Bytes
cb26acc
e9b69d2
 
 
 
e273309
e9b69d2
 
 
76f722d
e9b69d2
7c600ad
8ab445f
e1f0af6
e9b69d2
 
 
d989475
c8ab947
 
 
d989475
 
c8ab947
d989475
 
 
 
 
 
 
c8ab947
d989475
c8ab947
 
e9b69d2
 
 
 
 
 
 
 
 
 
 
 
e1f0af6
 
 
 
73a19a6
 
b3e0d41
e1f0af6
e9b69d2
 
 
61044da
22f4889
 
44aaf39
dd3c146
 
 
 
 
 
 
f3d4c6b
61044da
 
dd3c146
f3d4c6b
61044da
dd3c146
5895ac2
dd3c146
5895ac2
8c17d76
61044da
44aaf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e673bfc
 
 
 
 
 
 
 
 
 
 
 
9e3a2ff
 
 
 
 
9386491
dd3c146
40576c0
9386491
44aaf39
61044da
0662719
eff6dd2
a710a8c
343970c
 
e673bfc
e9b69d2
 
 
 
7c600ad
e9b69d2
 
c1057fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5504a3
c1057fc
f5504a3
65d171f
f5504a3
 
 
 
 
 
 
d4182d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c600ad
f5504a3
7c600ad
e673bfc
e9b69d2
 
 
 
 
24f33ad
 
dd3b355
f3d4c6b
343970c
85cde2d
dd3b355
e9b69d2
7c600ad
d989475
e9b69d2
 
e392146
 
 
 
 
 
e9b69d2
 
 
 
 
 
 
 
6ee662e
 
f5504a3
e9b69d2
 
 
d989475
 
e9b69d2
d989475
 
 
e9b69d2
7c600ad
 
e9b69d2
 
7c600ad
 
 
d989475
 
7c600ad
d989475
 
 
6ee662e
 
6766b80
730e1c5
 
 
 
 
 
 
 
 
d01e985
 
 
 
 
 
 
 
e273309
784c478
 
 
 
 
 
 
 
123602a
d01e985
e392146
f231e90
e392146
4bfb983
ec17809
f5504a3
730e1c5
d01e985
6c65795
7c600ad
6766b80
 
 
 
 
46c7c53
4bfb983
7c600ad
46c7c53
6ee662e
46c7c53
6ee662e
7c600ad
b79287b
46c7c53
6459fb3
6ee662e
46c7c53
 
4bfb983
46c7c53
784c478
4bfb983
e9b69d2
 
9b9ab2a
 
 
f7f0d54
7b74eba
 
 
 
 
 
 
 
7c600ad
e9b69d2
 
7b74eba
 
f5504a3
7b74eba
 
 
 
 
 
 
 
e9b69d2
 
 
 
7c600ad
 
e9b69d2
 
7c600ad
e9b69d2
 
9b9ab2a
bbacd9b
 
 
 
d01e985
7c600ad
 
f5504a3
65d171f
f5504a3
 
 
 
 
c1057fc
f5504a3
b79287b
 
0983170
d01e985
 
e9b69d2
7c600ad
6ee662e
 
f5504a3
7c600ad
 
9b9ab2a
 
7c600ad
 
 
d989475
 
 
 
 
7c600ad
 
 
 
 
 
 
 
d989475
 
7c600ad
d989475
7c600ad
 
d989475
6ee662e
 
d989475
7c600ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e673bfc
7c600ad
 
e673bfc
7c600ad
 
 
d01e985
ec17809
 
7c600ad
f5504a3
 
d01e985
e273309
f5b65ab
6459fb3
 
 
 
cb26acc
 
7c600ad
d989475
6ee662e
d989475
6ee662e
7c600ad
b79287b
76f722d
6459fb3
6ee662e
6459fb3
f5b65ab
 
 
7c600ad
 
 
6459fb3
5e9cc13
784c478
5e9cc13
6459fb3
 
7c600ad
 
 
 
 
 
 
76f722d
 
 
 
 
 
 
 
 
 
a2e0f11
7c600ad
 
8f2bb3e
7b74eba
c58ae3a
7b74eba
f5504a3
7b74eba
a385437
7b74eba
 
 
 
 
7c600ad
d989475
7c600ad
 
6459fb3
bbacd9b
 
d01e985
e273309
2e67085
c58ae3a
6459fb3
23bc8a9
7c600ad
 
 
6ee662e
 
 
7c600ad
d01e985
23bc8a9
7c600ad
8fe5320
5e9cc13
e273309
8fe5320
7b74eba
2986a1b
766aec1
7b74eba
2986a1b
766aec1
7b74eba
2986a1b
7b74eba
 
8f2bb3e
61044da
8fe5320
46c7c53
c8be4ae
 
8fe5320
7b74eba
2611f4f
1459ac2
 
 
 
 
 
 
 
 
4b9083a
0b561c5
4b9083a
0b561c5
4b9083a
 
0b561c5
4b9083a
 
480b27e
4b9083a
 
0b561c5
4b9083a
343970c
4b9083a
 
0b561c5
1459ac2
766aec1
5e9cc13
e392146
63bc064
e392146
 
6d0a9b0
6ee662e
2611f4f
 
6d0a9b0
f5504a3
 
 
 
 
 
 
9ea675a
766aec1
 
f5504a3
9ea675a
46c7c53
f7f0d54
766aec1
f5504a3
9ea675a
46c7c53
766aec1
f5504a3
9ea675a
46c7c53
5e9cc13
9b9ab2a
7c600ad
 
f7f0d54
8f2bb3e
7c600ad
 
e9b69d2
2611f4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
from datetime import datetime
from huggingface_hub import snapshot_download
from katsu import Katsu
from models import build_model
import gradio as gr
import librosa
import numpy as np
import os
import phonemizer
import pypdf
import random
import re
import spaces
import subprocess
import torch
import yaml

CUDA_AVAILABLE = torch.cuda.is_available()

snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN'])
config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml')))

models = {device: build_model(config['model_params'], device) for device in ['cpu'] + (['cuda'] if CUDA_AVAILABLE else [])}
for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items():
    for device in models:
        assert key in models[device], key
        try:
            models[device][key].load_state_dict(state_dict)
        except:
            state_dict = {k[7:]: v for k, v in state_dict.items()}
            models[device][key].load_state_dict(state_dict, strict=False)

PARAM_COUNT = sum(p.numel() for value in models['cpu'].values() for p in value.parameters())
assert PARAM_COUNT < 82_000_000, PARAM_COUNT

random_texts = {}
for lang in ['en', 'ja']:
    with open(f'{lang}.txt', 'r') as r:
        random_texts[lang] = [line.strip() for line in r]

def get_random_text(voice):
    if voice[0] == 'j':
        lang = 'ja'
    else:
        lang = 'en'
    return random.choice(random_texts[lang])

sents = set()
for txt in {'harvard_sentences', 'llama3_command-r_sentences_1st_person', 'llama3_command-r_sentences_excla', 'llama3_command-r_questions'}:
    txt += '.txt'
    subprocess.run(['wget', f'https://huggingface.co./spaces/Pendrokar/TTS-Spaces-Arena/resolve/main/{txt}'])
    with open(txt, 'r') as r:
        sents.update(r.read().strip().splitlines())
print('len(sents)', len(sents))

def parens_to_angles(s):
    return s.replace('(', '«').replace(')', '»')

def split_num(num):
    num = num.group()
    if '.' in num:
        return num
    elif ':' in num:
        h, m = [int(n) for n in num.split(':')]
        if m == 0:
            return f"{h} o'clock"
        elif m < 10:
            return f'{h} oh {m}'
        return f'{h} {m}'
    year = int(num[:4])
    if year < 1100 or year % 1000 < 10:
        return num
    left, right = num[:2], int(num[2:4])
    s = 's' if num.endswith('s') else ''
    if 100 <= year % 1000 <= 999:
        if right == 0:
            return f'{left} hundred{s}'
        elif right < 10:
            return f'{left} oh {right}{s}'
    return f'{left} {right}{s}'

def flip_money(m):
    m = m.group()
    bill = 'dollar' if m[0] == '$' else 'pound'
    if m[-1].isalpha():
        return f'{m[1:]} {bill}s'
    elif '.' not in m:
        s = '' if m[1:] == '1' else 's'
        return f'{m[1:]} {bill}{s}'
    b, c = m[1:].split('.')
    s = '' if b == '1' else 's'
    c = int(c.ljust(2, '0'))
    coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
    return f'{b} {bill}{s} and {c} {coins}'

def point_num(num):
    a, b = num.group().split('.')
    return ' point '.join([a, ' '.join(b)])

def normalize_text(text, lang):
    text = text.replace(chr(8216), "'").replace(chr(8217), "'")
    text = text.replace('«', chr(8220)).replace('»', chr(8221))
    text = text.replace(chr(8220), '"').replace(chr(8221), '"')
    text = parens_to_angles(text)
    for a, b in zip('、。!,:;?', ',.!,:;?'):
        text = text.replace(a, b+' ')
    text = re.sub(r'[^\S \n]', ' ', text)
    text = re.sub(r'  +', ' ', text)
    text = re.sub(r'(?<=\n) +(?=\n)', '', text)
    if lang == 'j':
        return text.strip()
    text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
    text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
    text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
    text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
    text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
    text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
    text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
    text = re.sub(r'(?<=\d),(?=\d)', '', text)
    text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
    text = re.sub(r'\d*\.\d+', point_num, text)
    text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text) # TODO: could be minus
    text = re.sub(r'(?<=\d)S', ' S', text)
    text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
    text = re.sub(r"(?<=X')S\b", 's', text)
    text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
    text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
    return text.strip()

phonemizers = dict(
    a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
    b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
    j=Katsu(),
)

# Starred voices are more stable
CHOICES = {
'🇺🇸 🚺 American Female ⭐': 'af',
'🇺🇸 🚺 Bella ⭐': 'af_bella',
'🇺🇸 🚺 Nicole ⭐': 'af_nicole',
'🇺🇸 🚺 Sarah ⭐': 'af_sarah',
'🇺🇸 🚺 American Female 1': 'af_1',
'🇺🇸 🚺 Alloy': 'af_alloy',
'🇺🇸 🚺 Jessica': 'af_jessica',
'🇺🇸 🚺 Nova': 'af_nova',
'🇺🇸 🚺 River': 'af_river',
'🇺🇸 🚺 Sky': 'af_sky',
'🇺🇸 🚹 Michael ⭐': 'am_michael',
'🇺🇸 🚹 Adam': 'am_adam',
'🇺🇸 🚹 Echo': 'am_echo',
'🇺🇸 🚹 Eric': 'am_eric',
'🇺🇸 🚹 Liam': 'am_liam',
'🇺🇸 🚹 Onyx': 'am_onyx',
'🇬🇧 🚺 British Female 0': 'bf_0',
'🇬🇧 🚺 British Female 1': 'bf_1',
'🇬🇧 🚺 British Female 2': 'bf_2',
'🇬🇧 🚺 British Female 3': 'bf_3',
'🇬🇧 🚺 Alice': 'bf_alice',
'🇬🇧 🚺 Lily': 'bf_lily',
'🇬🇧 🚹 British Male 0': 'bm_0',
'🇬🇧 🚹 British Male 1': 'bm_1',
'🇬🇧 🚹 Daniel': 'bm_daniel',
'🇬🇧 🚹 Fable': 'bm_fable',
'🇬🇧 🚹 George': 'bm_george',
'🇬🇧 🚹 Lewis': 'bm_lewis',
'🇯🇵 🚺 Japanese Female ⭐': 'jf_0',
'🇯🇵 🚺 Japanese Female 1': 'jf_1',
'🇯🇵 🚺 Japanese Female 2': 'jf_2',
'🇯🇵 🚺 Japanese Female 3': 'jf_3',
}
VOICES = {device: {k: torch.load(os.path.join(snapshot, 'voicepacks', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()} for device in models}

def resolve_voices(voice, warn=True):
    if not isinstance(voice, str) or voice == list(CHOICES.keys())[0]:
        return ['af']
    voices = voice.lower().replace(' ', '+').replace(',', '+').split('+')
    if warn:
        unks = {v for v in voices if v and v not in VOICES['cpu']}
        if unks:
            gr.Warning(f"Unknown voice{'s' if len(unks) > 1 else ''}: {','.join(unks)}")
    voices = [v for v in voices if v in VOICES['cpu']]
    return voices if voices else ['af']

def get_vocab():
    _pad = "$"
    _punctuation = ';:,.!?¡¿—…"«»“” '
    _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
    _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
    symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
    dicts = {}
    for i in range(len((symbols))):
        dicts[symbols[i]] = i
    return dicts

VOCAB = get_vocab()

def tokenize(ps):
    return [i for i in map(VOCAB.get, ps) if i is not None]

def phonemize(text, voice, norm=True):
    lang = resolve_voices(voice)[0][0]
    if norm:
        text = normalize_text(text, lang)
    ps = phonemizers[lang].phonemize([text])
    ps = ps[0] if ps else ''
    # TODO: Custom phonemization rules?
    ps = parens_to_angles(ps)
    # https://en.wiktionary.org/wiki/kokoro#English
    if lang in 'ab':
        ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
        ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
        ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
        ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
        if lang == 'a':
            ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
    ps = ''.join(filter(lambda p: p in VOCAB, ps))
    if lang == 'j' and any(p in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' for p in ps):
        gr.Warning('Japanese tokenizer does not handle English letters')
    return ps.strip()

harvsents = set()
with open('harvsents.txt', 'r') as r:
    for line in r:
        harvsents.add(phonemize(line, 'af'))
        harvsents.add(phonemize(line, 'bf_0'))

def length_to_mask(lengths):
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask+1, lengths.unsqueeze(1))
    return mask

SAMPLE_RATE = 24000

@torch.no_grad()
def forward(tokens, voices, speed, sk, device='cpu'):
    assert sk == os.environ['SK'], sk
    ref_s = torch.mean(torch.stack([VOICES[device][v][len(tokens)] for v in voices]), dim=0)
    tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
    input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
    text_mask = length_to_mask(input_lengths).to(device)
    bert_dur = models[device].bert(tokens, attention_mask=(~text_mask).int())
    d_en = models[device].bert_encoder(bert_dur).transpose(-1, -2)
    s = ref_s[:, 128:]
    d = models[device].predictor.text_encoder(d_en, s, input_lengths, text_mask)
    x, _ = models[device].predictor.lstm(d)
    duration = models[device].predictor.duration_proj(x)
    duration = torch.sigmoid(duration).sum(axis=-1) / speed
    pred_dur = torch.round(duration).clamp(min=1).long()
    pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
    c_frame = 0
    for i in range(pred_aln_trg.size(0)):
        pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
        c_frame += pred_dur[0,i].item()
    en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
    F0_pred, N_pred = models[device].predictor.F0Ntrain(en, s)
    t_en = models[device].text_encoder(tokens, input_lengths, text_mask)
    asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
    return models[device].decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()

@spaces.GPU(duration=10)
def forward_gpu(tokens, voices, speed, sk):
    return forward(tokens, voices, speed, sk, device='cuda')

def clamp_speed(speed):
    if not isinstance(speed, float) and not isinstance(speed, int):
        return 1
    elif speed < 0.5:
        return 0.5
    elif speed > 2:
        return 2
    return speed

def clamp_trim(trim):
    if not isinstance(trim, float) and not isinstance(trim, int):
        return 0.5
    elif trim < 0:
        return 0
    elif trim > 1:
        return 0.5
    return trim

def trim_if_needed(out, trim):
    if not trim:
        return out
    a, b = librosa.effects.trim(out, top_db=30)[1]
    a = int(a*trim)
    b = int(len(out)-(len(out)-b)*trim)
    return out[a:b]

# Must be backwards compatible with https://huggingface.co./spaces/Pendrokar/TTS-Spaces-Arena
def generate(text, voice='af', ps=None, speed=1, trim=0.5, use_gpu='auto', sk=None):
    ps = ps or phonemize(text, voice)
    if not sk and (text in sents or ps.strip('"') in harvsents):
        sk = os.environ['SK']
    if sk not in {os.environ['SK'], os.environ['ARENA']}:
        return (None, '')
    voices = resolve_voices(voice, warn=ps)
    speed = clamp_speed(speed)
    trim = clamp_trim(trim)
    use_gpu = use_gpu if use_gpu in ('auto', False, True) else 'auto'
    tokens = tokenize(ps)
    if not tokens:
        return (None, '')
    elif len(tokens) > 510:
        tokens = tokens[:510]
    ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
    use_gpu = len(ps) > 99 if use_gpu == 'auto' else use_gpu
    debug = '🏆' if sk == os.environ['ARENA'] else '🔥'
    try:
        if use_gpu:
            out = forward_gpu(tokens, voices, speed, sk)
        else:
            out = forward(tokens, voices, speed, sk)
    except gr.exceptions.Error as e:
        if use_gpu:
            gr.Warning(str(e))
            gr.Info('Switching to CPU')
            out = forward(tokens, voices, speed, sk)
        else:
            raise gr.Error(e)
            print(debug, datetime.now(), voices, len(ps), use_gpu, repr(e))
            return (None, '')
    out = trim_if_needed(out, trim)
    print(debug, datetime.now(), voices, len(ps), use_gpu, len(out))
    return ((SAMPLE_RATE, out), ps)

def toggle_autoplay(autoplay):
    return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)

USE_GPU_CHOICES = [('Auto 🔀', 'auto'), ('CPU 💬', False), ('ZeroGPU 📄', True)]
USE_GPU_INFOS = {
    'auto': 'Use CPU or GPU, whichever is faster',
    False: 'CPU is ~faster <100 tokens',
    True: 'ZeroGPU is ~faster >100 tokens',
}
def change_use_gpu(value):
    return gr.Dropdown(USE_GPU_CHOICES, value=value, label='Hardware', info=USE_GPU_INFOS[value], interactive=CUDA_AVAILABLE)

with gr.Blocks() as basic_tts:
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(label='Input Text', info='Generate speech for one segment of text using Kokoro, a TTS model with 80 million parameters')
            with gr.Row():
                voice = gr.Dropdown(list(CHOICES.items()), value='af', allow_custom_value=True, label='Voice', info='Starred voices are more stable')
                use_gpu = gr.Dropdown(
                    USE_GPU_CHOICES,
                    value='auto' if CUDA_AVAILABLE else False,
                    label='Hardware',
                    info=USE_GPU_INFOS['auto' if CUDA_AVAILABLE else False],
                    interactive=CUDA_AVAILABLE
                )
                use_gpu.change(fn=change_use_gpu, inputs=[use_gpu], outputs=[use_gpu])
            with gr.Row():
                random_btn = gr.Button('Random Text', variant='secondary')
                generate_btn = gr.Button('Generate', variant='primary')
            random_btn.click(get_random_text, inputs=[voice], outputs=[text])
            with gr.Accordion('Input Tokens', open=False):
                in_ps = gr.Textbox(show_label=False, info='Override the input text with custom phonemes. Leave this blank to automatically tokenize the input text instead.')
                with gr.Row():
                    clear_btn = gr.ClearButton(in_ps)
                    phonemize_btn = gr.Button('Tokenize Input Text', variant='primary')
            phonemize_btn.click(phonemize, inputs=[text, voice], outputs=[in_ps])
        with gr.Column():
            audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
            with gr.Accordion('Audio Settings', open=False):
                autoplay = gr.Checkbox(value=True, label='Autoplay')
                autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
                speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='⚡️ Speed', info='Adjust the speaking speed')
                trim = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label='✂️ Trim', info='How much to cut from both ends')
            with gr.Accordion('Output Tokens', open=True):
                out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 allowed. Same as input tokens if supplied, excluding unknowns.')
    with gr.Accordion('Voice Mixer', open=False):
        gr.Markdown('Create a custom voice by mixing and matching other voices. Click an orange button to add one part to your mix, or click a gray button to start over. You can also enter a voice mix as text.')
        for i in range(8):
            with gr.Row():
                for j in range(4):
                    with gr.Column():
                        btn = gr.Button(list(CHOICES.values())[i*4+j], variant='primary' if i*4+j < 10 else 'secondary')
                        btn.click(lambda v, b: f'{v}+{b}' if v.startswith(b[:2]) else b, inputs=[voice, btn], outputs=[voice])
                        voice.change(lambda v, b: gr.Button(b, variant='primary' if v.startswith(b[:2]) else 'secondary'), inputs=[voice, btn], outputs=[btn])
    with gr.Row():
        sk = gr.Textbox(visible=False)
    text.change(lambda: os.environ['SK'], outputs=[sk])
    text.submit(generate, inputs=[text, voice, in_ps, speed, trim, use_gpu, sk], outputs=[audio, out_ps])
    generate_btn.click(generate, inputs=[text, voice, in_ps, speed, trim, use_gpu, sk], outputs=[audio, out_ps])

@torch.no_grad()
def lf_forward(token_lists, voices, speed, sk, device='cpu'):
    assert sk == os.environ['SK'], sk
    voicepack = torch.mean(torch.stack([VOICES[device][v] for v in voices]), dim=0)
    outs = []
    for tokens in token_lists:
        ref_s = voicepack[len(tokens)]
        s = ref_s[:, 128:]
        tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
        text_mask = length_to_mask(input_lengths).to(device)
        bert_dur = models[device].bert(tokens, attention_mask=(~text_mask).int())
        d_en = models[device].bert_encoder(bert_dur).transpose(-1, -2)
        d = models[device].predictor.text_encoder(d_en, s, input_lengths, text_mask)
        x, _ = models[device].predictor.lstm(d)
        duration = models[device].predictor.duration_proj(x)
        duration = torch.sigmoid(duration).sum(axis=-1) / speed
        pred_dur = torch.round(duration).clamp(min=1).long()
        pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
            c_frame += pred_dur[0,i].item()
        en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
        F0_pred, N_pred = models[device].predictor.F0Ntrain(en, s)
        t_en = models[device].text_encoder(tokens, input_lengths, text_mask)
        asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
        outs.append(models[device].decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy())
    return outs

@spaces.GPU
def lf_forward_gpu(token_lists, voices, speed, sk):
    return lf_forward(token_lists, voices, speed, sk, device='cuda')

def resplit_strings(arr):
    # Handle edge cases
    if not arr:
        return '', ''
    if len(arr) == 1:
        return arr[0], ''
    # Try each possible split point
    min_diff = float('inf')
    best_split = 0
    # Calculate lengths when joined with spaces
    lengths = [len(s) for s in arr]
    spaces = len(arr) - 1  # Total spaces needed
    # Try each split point
    left_len = 0
    right_len = sum(lengths) + spaces
    for i in range(1, len(arr)):
        # Add current word and space to left side
        left_len += lengths[i-1] + (1 if i > 1 else 0)
        # Remove current word and space from right side
        right_len -= lengths[i-1] + 1
        diff = abs(left_len - right_len)
        if diff < min_diff:
            min_diff = diff
            best_split = i
    # Join the strings with the best split point
    return ' '.join(arr[:best_split]), ' '.join(arr[best_split:])

def recursive_split(text, voice):
    if not text:
        return []
    tokens = phonemize(text, voice, norm=False)
    if len(tokens) < 511:
        return [(text, tokens, len(tokens))] if tokens else []
    if ' ' not in text:
        return []
    for punctuation in ['!.?…', ':;', ',—']:
        splits = re.split(f'(?:(?<=[{punctuation}])|(?<=[{punctuation}]["\'»])|(?<=[{punctuation}]["\'»]["\'»])) ', text)
        if len(splits) > 1:
            break
        else:
            splits = None
    splits = splits or text.split(' ')
    a, b = resplit_strings(splits)
    return recursive_split(a, voice) + recursive_split(b, voice)

def segment_and_tokenize(text, voice, skip_square_brackets=True, newline_split=2):
    lang = resolve_voices(voice)[0][0]
    if skip_square_brackets:
        text = re.sub(r'\[.*?\]', '', text)
    texts = [t.strip() for t in re.split('\n{'+str(newline_split)+',}', normalize_text(text, lang))] if newline_split > 0 else [normalize_text(text, lang)]
    segments = [row for t in texts for row in recursive_split(t, voice)]
    return [(i, *row) for i, row in enumerate(segments)]

def lf_generate(segments, voice, speed=1, trim=0, pad_between=0, use_gpu=True, sk=None):
    if sk != os.environ['SK']:
        return
    token_lists = list(map(tokenize, segments['Tokens']))
    voices = resolve_voices(voice)
    speed = clamp_speed(speed)
    trim = clamp_trim(trim)
    pad_between = int(pad_between)
    use_gpu = True
    batch_sizes = [89, 55, 34, 21, 13, 8, 5, 3, 2, 1, 1]
    i = 0
    while i < len(token_lists):
        bs = batch_sizes.pop() if batch_sizes else 100
        tokens = token_lists[i:i+bs]
        print('📖', datetime.now(), len(tokens), voices, use_gpu)
        try:
            if use_gpu:
                outs = lf_forward_gpu(tokens, voices, speed, sk)
            else:
                outs = lf_forward(tokens, voices, speed, sk)
        except gr.exceptions.Error as e:
            if use_gpu:
                gr.Warning(str(e))
                gr.Info('Switching to CPU')
                outs = lf_forward(tokens, voices, speed, sk)
                use_gpu = False
            elif outs:
                gr.Warning(repr(e))
                i = len(token_lists)
            else:
                raise gr.Error(e)
        for out in outs:
            if i > 0 and pad_between > 0:
                yield (SAMPLE_RATE, np.zeros(pad_between))
            out = trim_if_needed(out, trim)
            yield (SAMPLE_RATE, out)
        i += bs

def did_change_segments(segments):
    x = len(segments) if segments['Length'].any() else 0
    return [
        gr.Button('Tokenize', variant='secondary' if x else 'primary'),
        gr.Button(f'Generate x{x}', variant='primary' if x else 'secondary', interactive=x > 0),
    ]

def extract_text(file):
    if file.endswith('.pdf'):
        with open(file, 'rb') as rb:
            pdf_reader = pypdf.PdfReader(rb)
            return '\n'.join([page.extract_text() for page in pdf_reader.pages])
    elif file.endswith('.txt'):
        with open(file, 'r') as r:
            return '\n'.join([line for line in r])
    return None

with gr.Blocks() as lf_tts:
    with gr.Row():
        with gr.Column():
            file_input = gr.File(file_types=['.pdf', '.txt'], label='pdf or txt')
            text = gr.Textbox(label='Input Text', info='Generate speech in batches of 100 text segments and automatically join them together')
            file_input.upload(fn=extract_text, inputs=[file_input], outputs=[text])
            with gr.Row():
                voice = gr.Dropdown(list(CHOICES.items()), value='af', allow_custom_value=True, label='Voice', info='Starred voices are more stable')
                use_gpu = gr.Dropdown(
                    [('ZeroGPU 🚀', True), ('CPU 🐌', False)],
                    value=CUDA_AVAILABLE,
                    label='Hardware',
                    info='GPU is >10x faster but has a usage quota',
                    interactive=CUDA_AVAILABLE
                )
            with gr.Accordion('Text Settings', open=False):
                skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations')
                newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0)
        with gr.Column():
            audio_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
            with gr.Accordion('Audio Settings', open=True):
                speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='⚡️ Speed', info='Adjust the speaking speed')
                trim = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label='✂️ Trim', info='How much to cut from both ends')
                pad_between = gr.Slider(minimum=0, maximum=24000, value=0, step=1000, label='🔇 Pad Between', info='How many silent samples to insert between segments')
            with gr.Row():
                segment_btn = gr.Button('Tokenize', variant='primary')
                generate_btn = gr.Button('Generate x0', variant='secondary', interactive=False)
                stop_btn = gr.Button('Stop', variant='stop')
    with gr.Row():
        segments = gr.Dataframe(headers=['#', 'Text', 'Tokens', 'Length'], row_count=(1, 'dynamic'), col_count=(4, 'fixed'), label='Segments', interactive=False, wrap=True)
        segments.change(fn=did_change_segments, inputs=[segments], outputs=[segment_btn, generate_btn])
    with gr.Row():
        sk = gr.Textbox(visible=False)
    segments.change(lambda: os.environ['SK'], outputs=[sk])
    segment_btn.click(segment_and_tokenize, inputs=[text, voice, skip_square_brackets, newline_split], outputs=[segments])
    generate_event = generate_btn.click(lf_generate, inputs=[segments, voice, speed, trim, pad_between, use_gpu, sk], outputs=[audio_stream])
    stop_btn.click(fn=None, cancels=generate_event)

with gr.Blocks() as about:
    gr.Markdown('''
Kokoro is a frontier TTS model for its size. It has [80 million](https://hf.co/spaces/hexgrad/Kokoro-TTS/blob/main/app.py#L34) parameters, uses a lean [StyleTTS 2](https://github.com/yl4579/StyleTTS2) architecture, and was trained on high-quality data. The weights are currently private, but a free public demo is hosted here, at `https://hf.co/spaces/hexgrad/Kokoro-TTS`. The Community tab is open for feature requests, bug reports, etc. For other inquiries, contact `@rzvzn` on Discord.

### FAQ
**Will this be open sourced?**<br/>
There currently isn't a release date scheduled for the weights. The inference code in this space is MIT licensed. The architecture was already published by Li et al, with MIT licensed code and pretrained weights.

**What is the difference between stable and unstable voices?**<br/>
Unstable voices are more likely to stumble or produce unnatural artifacts, especially on short or strange texts. Stable voices are more likely to deliver natural speech on a wider range of inputs. The first two audio clips in this [blog post](https://hf.co/blog/hexgrad/kokoro-short-burst-upgrade) are examples of unstable and stable speech. Note that even unstable voices can sound fine on medium to long texts.

**How can CPU be faster than ZeroGPU?**<br/>
The CPU is a dedicated resource for this Space, while the ZeroGPU pool is shared and dynamically allocated across all of HF. The ZeroGPU queue/allocator system inevitably adds latency to each request.<br/>
For Basic TTS under ~100 tokens or characters, only a few seconds of audio need to be generated, so the actual compute is not that heavy. In these short bursts, the dedicated CPU can often compute the result faster than the total time it takes to: enter the ZeroGPU queue, wait to get allocated, and have a GPU compute and deliver the result.<br/>
ZeroGPU catches up beyond 100 tokens and especially closer to the ~500 token context window. Long Form mode processes batches of 100 segments at a time, so the GPU should outspeed the CPU by 1-2 orders of magnitude.

### Compute
The model was trained on 1x A100-class 80GB instances rented from [Vast.ai](https://cloud.vast.ai/?ref_id=79907).<br/>
Vast was chosen over other compute providers due to its competitive on-demand hourly rates.<br/>
The average hourly cost for the 1x A100-class 80GB VRAM instances used for training was below $1/hr — around half the quoted rates from other providers.

### Gradio API
The API has been restricted due to high request volume impacting CPU latency.

### Licenses
Inference code: MIT<br/>
[eSpeak NG](https://github.com/espeak-ng/espeak-ng): GPL-3.0<br/>
Random English texts: Unknown from [Quotable Data](https://github.com/quotable-io/data/blob/master/data/quotes.json)<br/>
Random Japanese texts: CC0 public domain from [Common Voice](https://github.com/common-voice/common-voice/tree/main/server/data/ja)
''')
'''
This Space can be used via API. The following code block can be copied and run in one Google Colab cell.
```
# 1️⃣ Install the Gradio Python client
!pip install -q gradio_client
# 2️⃣ Initialize the client
from gradio_client import Client
client = Client('hexgrad/Kokoro-TTS')
# 3️⃣ Call the generate endpoint, which returns a pair: an audio path and a string of output phonemes
audio_path, out_ps = client.predict(
    text="How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born.",
    voice='af',
    api_name='/generate'
)
# 4️⃣ Display the audio and print the output phonemes
from IPython.display import display, Audio
display(Audio(audio_path, autoplay=True))
print(out_ps)
```
This Space and the underlying Kokoro model are both under development and subject to change. Reliability is not guaranteed. Hugging Face and Gradio might enforce their own rate limits.
'''
with gr.Blocks() as changelog:
    gr.Markdown('''
**30 Nov 2024**<br/>
✂️ Better trimming with `librosa.effects.trim`<br/>
🏆 https://hf.co/spaces/Pendrokar/TTS-Spaces-Arena

**28 Nov 2024**<br/>
🥈 CPU fallback<br/>
🌊 Long Form streaming and stop button<br/>
✋ Restricted API due to high request volume impacting CPU latency

**25 Nov 2024**<br/>
🎨 Voice Mixer added

**24 Nov 2024**<br/>
🛑 Model training halted, v0.19 is the current stable version

**23 Nov 2024**<br/>
🔀 Hardware switching between CPU and GPU<br/>
🗣️ Restored old voices, back up to 32 total

**22 Nov 2024**<br/>
🚀 Model v0.19<br/>
🧪 Validation losses: 0.261 mel, 0.627 dur, 1.897 f0<br/>
📄 https://hf.co/blog/hexgrad/kokoro-short-burst-upgrade

**15 Nov 2024**<br/>
🚀 Model v0.16<br/>
🧪 Validation losses: 0.263 mel, 0.646 dur, 1.934 f0

**12 Nov 2024**<br/>
🚀 Model v0.14<br/>
🧪 Validation losses: 0.262 mel, 0.642 dur, 1.889 f0
''')

with gr.Blocks() as app:
    gr.TabbedInterface(
        [basic_tts, lf_tts, about, changelog],
        ['🔥 Basic TTS', '📖 Long Form', 'ℹ️ About', '📝 Changelog'],
    )

if __name__ == '__main__':
    app.queue(api_open=True).launch(show_api=False)