Spaces:
Running
Running
import os | |
import streamlit as st | |
from st_aggrid import AgGrid | |
import pandas as pd | |
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer | |
# Set the page layout for Streamlit | |
st.set_page_config(layout="wide") | |
# CSS styling | |
style = ''' | |
<style> | |
body {background-color: #F5F5F5; color: #000000;} | |
header {visibility: hidden;} | |
div.block-container {padding-top:4rem;} | |
section[data-testid="stSidebar"] div:first-child { | |
padding-top: 0; | |
} | |
.font { | |
text-align:center; | |
font-family:sans-serif;font-size: 1.25rem;} | |
</style> | |
''' | |
st.markdown(style, unsafe_allow_html=True) | |
st.markdown('<p style="font-family:sans-serif;font-size: 1.5rem;text-align: right;"> HertogAI Table Q&A using TAPAS and Model Language</p>', unsafe_allow_html=True) | |
st.markdown('<p style="font-family:sans-serif;font-size: 0.7rem;text-align: right;"> This code is based on Jordan Skinner. I enhanced his work using Language Model T5</p>', unsafe_allow_html=True) | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.6rem;text-align: right;'>Pre-trained TAPAS model runs on max 64 rows and 32 columns data. Make sure the file data doesn't exceed these dimensions.</p>", unsafe_allow_html=True) | |
# Initialize TAPAS pipeline | |
tqa = pipeline(task="table-question-answering", | |
model="google/tapas-large-finetuned-wtq", | |
device="cpu") | |
# Initialize T5 tokenizer and model for text generation | |
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small") | |
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small") | |
# File uploader in the sidebar | |
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx']) | |
# File processing and question answering | |
if file_name is None: | |
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True) | |
else: | |
try: | |
# Check file type and handle reading accordingly | |
if file_name.name.endswith('.csv'): | |
df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed | |
elif file_name.name.endswith('.xlsx'): | |
df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files | |
else: | |
st.error("Unsupported file type") | |
df = None | |
# Continue with further processing if df is loaded | |
if df is not None: | |
numeric_columns = df.select_dtypes(include=['object']).columns | |
for col in numeric_columns: | |
df[col] = pd.to_numeric(df[col], errors='ignore') | |
st.write("Original Data:") | |
st.write(df) | |
# Create a copy for numerical operations | |
df_numeric = df.copy() | |
df = df.astype(str) | |
# Display the first 5 rows of the dataframe in an editable grid | |
grid_response = AgGrid( | |
df.head(5), | |
columns_auto_size_mode='FIT_CONTENTS', | |
editable=True, | |
height=300, | |
width='100%', | |
) | |
except Exception as e: | |
st.error(f"Error reading file: {str(e)}") | |
# User input for the question | |
question = st.text_input('Type your question') | |
# Process the answer using TAPAS and T5 | |
with st.spinner(): | |
if st.button('Answer'): | |
try: | |
# Get the raw answer from TAPAS | |
raw_answer = tqa(table=df, query=question, truncation=True) | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Raw Result From TAPAS: </p>", | |
unsafe_allow_html=True) | |
st.success(raw_answer) | |
# Extract relevant information from the TAPAS result | |
answer = raw_answer['answer'] | |
aggregator = raw_answer.get('aggregator', '') | |
coordinates = raw_answer.get('coordinates', []) | |
cells = raw_answer.get('cells', []) | |
# Construct a base sentence replacing 'SUM' with the query term | |
base_sentence = f"The {question.lower()} of the selected data is {answer}." | |
if coordinates and cells: | |
rows_info = [f"Row {coordinate[0] + 1}, Column '{df.columns[coordinate[1]]}' with value {cell}" | |
for coordinate, cell in zip(coordinates, cells)] | |
rows_description = " and ".join(rows_info) | |
base_sentence += f" This includes the following data: {rows_description}." | |
# Generate a fluent response using the T5 model, rephrasing the base sentence | |
input_text = f"Given the question: '{question}', generate a more human-readable response: {base_sentence}" | |
# Tokenize the input and generate a fluent response using T5 | |
inputs = t5_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True) | |
summary_ids = t5_model.generate(inputs, max_length=150, num_beams=4, early_stopping=True) | |
# Decode the generated text | |
generated_text = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
# Display the final generated response | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Final Generated Response with LLM: </p>", unsafe_allow_html=True) | |
st.success(generated_text) | |
except Exception as e: | |
st.warning("Please retype your question and make sure to use the column name and cell value correctly.") | |