Spaces:
Sleeping
Sleeping
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
import streamlit as st | |
from st_aggrid import AgGrid | |
import pandas as pd | |
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer | |
st.set_page_config(layout="wide") | |
style = ''' | |
<style> | |
body {background-color: #F5F5F5; color: #000000;} | |
header {visibility: hidden;} | |
div.block-container {padding-top:4rem;} | |
section[data-testid="stSidebar"] div:first-child { | |
padding-top: 0; | |
} | |
.font { | |
text-align:center; | |
font-family:sans-serif;font-size: 1.25rem;} | |
</style> | |
''' | |
st.markdown(style, unsafe_allow_html=True) | |
st.markdown('<p style="font-family:sans-serif;font-size: 1.9rem;"> HertogAI Q&A table V1 using TAPAS and Text Generated</p>', unsafe_allow_html=True) | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'>Pre-trained TAPAS model runs on max 64 rows and 32 columns data. Make sure the file data doesn't exceed these dimensions.</p>", unsafe_allow_html=True) | |
# Initialize TAPAS and Hugging Face Model (T5 for NLP generation) | |
tqa = pipeline(task="table-question-answering", | |
model="google/tapas-large-finetuned-wtq", | |
device="cpu") | |
model_name = "t5-small" # You can use a larger model or GPT as needed | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
# Function to generate natural language from TAPAS output | |
def generate_nlp_from_tapas(tapas_output, df): | |
""" | |
Use Hugging Face's T5 model to generate natural language text from TAPAS output. | |
""" | |
try: | |
# Construct prompt using TAPAS output | |
answer = tapas_output['answer'] | |
coordinates = tapas_output['coordinates'] | |
answer_data = [df.iloc[row, col] for row, col in coordinates] | |
# Format the prompt for NLP model | |
prompt = f"Answer: {answer}. Data Location: Rows {coordinates}, Values: {answer_data}. Please summarize this information in a natural language sentence." | |
# Tokenize input and generate response | |
inputs = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=512) | |
outputs = model.generate(inputs, max_length=100, num_beams=5, early_stopping=True) | |
# Decode and return the generated response | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
except Exception as e: | |
return f"Error generating response: {str(e)}" | |
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx']) | |
if file_name is None: | |
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True) | |
else: | |
try: | |
# Check file type and handle reading accordingly | |
if file_name.name.endswith('.csv'): | |
df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed | |
elif file_name.name.endswith('.xlsx'): | |
df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files | |
else: | |
st.error("Unsupported file type") | |
df = None | |
# Continue with further processing if df is loaded | |
if df is not None: | |
numeric_columns = df.select_dtypes(include=['object']).columns | |
for col in numeric_columns: | |
df[col] = pd.to_numeric(df[col], errors='ignore') | |
st.write("Original Data:") | |
st.write(df) | |
# Create a copy for numerical operations | |
df_numeric = df.copy() | |
df = df.astype(str) | |
grid_response = AgGrid( | |
df.head(5), | |
columns_auto_size_mode='FIT_CONTENTS', | |
editable=True, | |
height=300, | |
width='100%', | |
) | |
except Exception as e: | |
st.error(f"Error reading file: {str(e)}") | |
question = st.text_input('Type your question') | |
with st.spinner(): | |
if(st.button('Answer')): | |
try: | |
# Get the raw answer from TAPAS | |
raw_answer = tqa(table=df, query=question, truncation=True) | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Raw Result: </p>", unsafe_allow_html=True) | |
st.success(raw_answer) | |
# Use Hugging Face's T5 model to generate NLP text from TAPAS output | |
final_answer = generate_nlp_from_tapas(raw_answer, df) | |
# Display the generated answer in a simple format | |
st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Generated Answer: </p>", unsafe_allow_html=True) | |
st.success(final_answer) | |
except Exception as e: | |
st.warning(f"Error: {str(e)} - Please retype your question and ensure it is correctly formatted.") | |