Spaces:
Sleeping
Sleeping
### 1. Imports and class names setup (步驟1) ### | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
class_names = ['pizza', 'steak', 'sushi'] | |
### 2. Model and transforms perparation (步驟2) ### | |
"""Create EffNetB2 model: 獲得模型定義與變換""" | |
effnetb2, effnetb2_transforms = create_effnetb2_model( | |
num_classes=3) # (len(class_names) would also work) | |
# Load save weights | |
"""加載權重到模型""" | |
effnetb2.load_state_dict( | |
torch.load( | |
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth", | |
map_location=torch.device("cpu") # load the model to the CPU | |
) | |
) | |
### 3. Predict function (步驟3) ### | |
"""Create predict function: 建立預測函數 (from 7.2)""" | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
"""Transform the target image and add a batch dimension""" | |
img = effnetb2_transforms(img).unsqueeze(0) # unsqueeze = add batch dimension on 0th index | |
# Put model into eval mode, make prediction (Put model into evaluation mode and turn on inference mode) | |
effnetb2.eval() | |
with torch.inference_mode(): | |
# Pass transformed image through the model and turn the prediction logits into probaiblities | |
"""Pass the transformed image through the model and turn the prediction logits into prediction probabilities""" | |
pred_probs = torch.softmax(effnetb2(img), dim=1) | |
# Create a prediction label and prediction probability dictionary (for each prediction class (this is the required format for Gradio's output parameter)) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} | |
# Calculate pred time (prediction time) | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time (the prediction dictionary and prediction time) | |
return pred_labels_and_probs, pred_time | |
### 4. Gradio app (步驟4) ### | |
"""(from 7.4)""" | |
# Create title, description and article (strings) | |
title = "FoodVision Mini 🍕🥩🍣" | |
description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model to classify images as pizza, steak or sushi." | |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface)." | |
# Create example list (from "examples/" directory) | |
"""(based on 8.3)""" | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # maps inputs to outputs #( mapping function from input to output) | |
inputs=gr.Image(type="pil"), #( what are the inputs?) | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), #( what are the outputs?) | |
gr.Number(label="Prediction time (s)")], #( our fn has two outputs, therefore we have two outputs) | |
# (Create examples list from "examples/" directory) | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch() | |