Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch Phi model.""" | |
import math | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from transformers.activations import ACT2FN | |
from cache_utils import Cache, DynamicCache | |
from modeling_attn_mask_utils import _prepare_4d_causal_attention_mask | |
from transformers.modeling_outputs import ( | |
BaseModelOutputWithPast, | |
CausalLMOutputWithPast, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
) | |
from configuration_phi import PhiConfig | |
logger = logging.get_logger(__name__) | |
_CHECKPOINT_FOR_DOC = "microsoft/phi-1" | |
_CONFIG_FOR_DOC = "PhiConfig" | |
PHI_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"microsoft/phi-1", | |
"microsoft/phi-1_5", | |
"microsoft/phi-2", | |
# See all Phi models at https://huggingface.co./models?filter=phi | |
] | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Phi | |
class PhiRotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | |
super().__init__() | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# Build here to make `torch.jit.trace` work. | |
self._set_cos_sin_cache( | |
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | |
) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
def forward(self, x, seq_len=None): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
if seq_len > self.max_seq_len_cached: | |
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | |
return ( | |
self.cos_cached[:seq_len].to(dtype=x.dtype), | |
self.sin_cached[:seq_len].to(dtype=x.dtype), | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Phi | |
class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding): | |
"""PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
t = t / self.scaling_factor | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Phi | |
class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding): | |
"""PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
self.scaling_factor = scaling_factor | |
super().__init__(dim, max_position_embeddings, base, device) | |
def _set_cos_sin_cache(self, seq_len, device, dtype): | |
self.max_seq_len_cached = seq_len | |
if seq_len > self.max_position_embeddings: | |
base = self.base * ( | |
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) | |
) ** (self.dim / (self.dim - 2)) | |
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | |
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | |
# Copied from transformers.models.llama.modeling_llama.rotate_half | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb | |
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
q (`torch.Tensor`): The query tensor. | |
k (`torch.Tensor`): The key tensor. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`): | |
The position indices of the tokens corresponding to the query and key tensors. For example, this can be | |
used to pass offsetted position ids when working with a KV-cache. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
q_embed = (q * cos) + (rotate_half(q) * sin) | |
k_embed = (k * cos) + (rotate_half(k) * sin) | |
return q_embed, k_embed | |
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Phi | |
class PhiMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
############################################################################################################################# | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
############################################################################################################################# | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
class PhiAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None): | |
super().__init__() | |
self.config = config | |
self.layer_idx = layer_idx | |
if layer_idx is None: | |
logger.warning_once( | |
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | |
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.attention_dropout = config.attention_dropout | |
self.hidden_size = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.hidden_size // self.num_heads | |
self.num_key_value_heads = config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.max_position_embeddings = config.max_position_embeddings | |
self.rope_theta = config.rope_theta | |
self.partial_rotary_factor = config.partial_rotary_factor | |
self.is_causal = True | |
if (self.head_dim * self.num_heads) != self.hidden_size: | |
raise ValueError( | |
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | |
f" and `num_heads`: {self.num_heads})." | |
) | |
############################################################################################################################# | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True) | |
self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True) | |
############################################################################################################################# | |
self.qk_layernorm = config.qk_layernorm | |
if self.qk_layernorm: | |
self.q_layernorm = nn.LayerNorm( | |
config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True | |
) | |
self.k_layernorm = nn.LayerNorm( | |
config.hidden_size // self.num_heads, eps=config.layer_norm_eps, elementwise_affine=True | |
) | |
self._init_rope() | |
def _init_rope(self): | |
if self.config.rope_scaling is None: | |
self.rotary_emb = PhiRotaryEmbedding( | |
int(self.partial_rotary_factor * self.head_dim), | |
max_position_embeddings=self.max_position_embeddings, | |
base=self.rope_theta, | |
) | |
else: | |
scaling_type = self.config.rope_scaling["type"] | |
scaling_factor = self.config.rope_scaling["factor"] | |
if scaling_type == "linear": | |
self.rotary_emb = PhiLinearScalingRotaryEmbedding( | |
int(self.partial_rotary_factor * self.head_dim), | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
base=self.rope_theta, | |
) | |
elif scaling_type == "dynamic": | |
self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding( | |
int(self.partial_rotary_factor * self.head_dim), | |
max_position_embeddings=self.max_position_embeddings, | |
scaling_factor=scaling_factor, | |
base=self.rope_theta, | |
) | |
else: | |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
if self.qk_layernorm: | |
query_states = self.q_layernorm(query_states) | |
key_states = self.k_layernorm(key_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
# Partial rotary embedding | |
query_rot, query_pass = ( | |
query_states[..., : self.rotary_emb.dim], | |
query_states[..., self.rotary_emb.dim :], | |
) | |
key_rot, key_pass = ( | |
key_states[..., : self.rotary_emb.dim], | |
key_states[..., self.rotary_emb.dim :], | |
) | |
# [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] | |
query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) | |
# [batch_size, seq_length, num_heads, head_dim] | |
query_states = torch.cat((query_rot, query_pass), dim=-1) | |
key_states = torch.cat((key_rot, key_pass), dim=-1) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos, "partial_rotation_size": self.rotary_emb.dim} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
############################################################################################################################# | |
# Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow | |
attn_weights = torch.matmul( | |
query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3) | |
) / math.sqrt(self.head_dim) | |
############################################################################################################################# | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | |
############################################################################################################################# | |
attn_output = torch.matmul(attn_weights, value_states) | |
############################################################################################################################# | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.dense(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class PhiDecoderLayer(nn.Module): | |
def __init__(self, config: PhiConfig, layer_idx: int): | |
super().__init__() | |
self.self_attn = PhiAttention(config, layer_idx=layer_idx) | |
self.mlp = PhiMLP(config) | |
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): | |
input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range | |
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
residual = hidden_states | |
hidden_states = self.input_layernorm(hidden_states) | |
# Self Attention | |
attn_outputs, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
attn_outputs = self.resid_dropout(attn_outputs) | |
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) | |
############################################################################################################################# | |
hidden_states = attn_outputs + feed_forward_hidden_states + residual | |
############################################################################################################################# | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
PHI_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`PhiConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class PhiPreTrainedModel(PreTrainedModel): | |
config_class = PhiConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["PhiDecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
_supports_cache_class = True | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
PHI_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
[What are position IDs?](../glossary#position-ids) | |
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | |
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | |
Two formats are allowed: | |
- a [`~cache_utils.Cache`] instance; | |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | |
cache format. | |
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | |
legacy cache format will be returned. | |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | |
of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class PhiModel(PhiPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`] | |
Args: | |
config: PhiConfig | |
""" | |
def __init__(self, config: PhiConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | |
self.embed_dropout = nn.Dropout(config.embd_pdrop) | |
self.layers = nn.ModuleList( | |
[PhiDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
# self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
batch_size, seq_length = input_ids.shape[:2] | |
elif inputs_embeds is not None: | |
batch_size, seq_length = inputs_embeds.shape[:2] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
past_key_values_length = 0 | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
if use_cache: | |
use_legacy_cache = not isinstance(past_key_values, Cache) | |
if use_legacy_cache: | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
past_key_values_length = past_key_values.get_usable_length(seq_length) | |
if position_ids is None: | |
device = input_ids.device if input_ids is not None else inputs_embeds.device | |
position_ids = torch.arange( | |
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | |
) | |
position_ids = position_ids.unsqueeze(0) | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
inputs_embeds = self.embed_dropout(inputs_embeds) | |
# 4d mask is passed through the layers | |
attention_mask = _prepare_4d_causal_attention_mask( | |
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length | |
) | |
hidden_states = inputs_embeds | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
next_decoder_cache = None | |
for decoder_layer in self.layers: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_values, | |
output_attentions, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
) | |
hidden_states = layer_outputs[0] | |
if use_cache: | |
next_decoder_cache = layer_outputs[2 if output_attentions else 1] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
hidden_states = self.final_layernorm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = None | |
if use_cache: | |
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | |
if not return_dict: | |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
class PhiForCausalLM(PhiPreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi,bias=False->bias=True | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = PhiModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True) | |
# Initialize weights and apply final processing | |
self.post_init() | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings | |
def get_output_embeddings(self): | |
return self.lm_head | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder | |
def set_decoder(self, decoder): | |
self.model = decoder | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder | |
def get_decoder(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |