Spaces:
Sleeping
Sleeping
File size: 7,559 Bytes
62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 5e811f4 62c3c41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import torch
from torch import nn
import pandas as pd
from pathlib import Path
import matplotlib.pyplot as plt
from torch.nn.modules.loss import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from sklearn.metrics import accuracy_score, f1_score
from sklearn.model_selection import train_test_split
#####################################################################################################################
def preprocess_data(label_X, target_y):
preprocessed= TensorDataset(label_X, target_y)
return preprocessed
def dataloader(dataset, batch_size, shuffle, num_workers):
dataloader= DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle= shuffle,
num_workers=num_workers)
return (dataloader)
class RNN_model(nn.Module):
def __init__(self):
super().__init__()
self.rnn= nn.RNN(input_size=1477, hidden_size=240,num_layers=1, nonlinearity= 'relu', bias= True).to('cuda')
self.output= nn.Linear(in_features=240, out_features=24).to('cuda')
def forward(self, x):
y, hidden= self.rnn(x)
y = y.to('cuda')
x= self.output(y).to('cuda')
return(x)
#####################################################################################################################
# import data
df= pd.read_csv('Symptom2Disease_1.csv')
target=['Psoriasis', 'Varicose Veins', 'Typhoid', 'Chicken pox',
'Impetigo', 'Dengue', 'Fungal infection', 'Common Cold',
'Pneumonia', 'Dimorphic Hemorrhoids', 'Arthritis', 'Acne',
'Bronchial Asthma', 'Hypertension', 'Migraine',
'Cervical spondylosis', 'Jaundice', 'Malaria',
'urinary tract infection', 'allergy',
'gastroesophageal reflux disease', 'drug reaction',
'peptic ulcer disease', 'diabetes']
target_dict= {i:j for i,j in enumerate(sorted(target))}
df['label']= df['label'].replace({j:i for i,j in enumerate(sorted(target))})
df.drop('Unnamed: 0', axis= 1, inplace= True)
df.duplicated().sum()
df[df.duplicated]
df.drop_duplicates(inplace= True)
df['label'].value_counts()
#####################################################################################################################
train_data, test_data= train_test_split(df, test_size=0.15, random_state=42 )
train_data['label'].value_counts().sort_index()
test_data['label'].value_counts().sort_index()
#vectorizer= nltk_u.vectorizer()
from sklearn.feature_extraction.text import TfidfVectorizer
from spacy.lang.de.stop_words import STOP_WORDS
vectorizer = TfidfVectorizer(stop_words=list(STOP_WORDS))
vectorizer.fit(train_data.text)
vectorizer.get_feature_names_out()[: 100]
vectorizer= vectorizer
data_input= vectorizer.transform(train_data.text)
test_data_input= vectorizer.transform(test_data.text)
#####################################################################################################################
# Convert vectors to tensors
input_data_tensors= torch.tensor(data_input.toarray()).to(torch.float32)
test_data_tensors= torch.tensor(test_data_input.toarray()).to(torch.float32)
train_data_output= torch.tensor(train_data['label'].values)
test_data_output= torch.tensor(test_data['label'].values)
train_dataset= preprocess_data(input_data_tensors, train_data_output)
test_dataset= preprocess_data(test_data_tensors, test_data_output)
train_dataloader= dataloader(dataset=train_dataset,
batch_size=32, shuffle= True, num_workers=2)
test_dataloader= dataloader(dataset=test_dataset,
batch_size=32, shuffle= False, num_workers=2)
text, target= next(iter(train_dataloader))
#####################################################################################################################
if torch.cuda.is_available():
device = "cuda"
print(f'################################################################# device: {device}#################################################################')
else:
device = "cpu"
#####################################################################################################################
model= RNN_model().to(device)
loss_fn= CrossEntropyLoss()
optimizer= torch.optim.SGD(model.parameters(), lr= 0.1, weight_decay=0)
#####################################################################################################################
## train model
epoch= 300
results= {
"train_loss": [],
"train_accuracy": [],
"test_loss": [],
"test_accuracy": []
}
for i in range(epoch):
train_loss=0
train_acc=0
for batch, (X, y) in enumerate(train_dataloader):
X, y= X.to('cuda'), y.to('cuda')
# Train the model
model.train()
optimizer.zero_grad()
y_logits= model(X).to('cuda')
# Calculate the loss
loss= loss_fn(y_logits, y).to('cuda')
train_loss += loss
# ypreds
y_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1)
accuracy = accuracy_score(y.cpu(), y_preds.cpu())
train_acc += accuracy
# zero grad
optimizer.zero_grad()
# Loss backward
loss.backward()
# Optimizer step
optimizer.step()
train_loss /= len(train_dataloader)
train_acc /=len(train_dataloader)
test_loss = 0
test_acc=0
model.eval()
with torch.inference_mode():
for X, y in test_dataloader:
X, y= X.to('cuda'), y.to('cuda')
y_logits= model(X).to('cuda')
loss= loss_fn(y_logits, y).to('cuda')
test_loss += loss
test_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1).to('cuda')
accuracy = accuracy_score(y.cpu(), test_preds.cpu())
test_acc += accuracy
test_loss /= len(test_dataloader)
test_acc /= len(test_dataloader)
results['train_loss'].append(train_loss)
results['train_accuracy'].append(train_acc)
results['test_loss'].append(test_loss)
results['test_accuracy'].append(test_acc)
if i % 50 == 0:
print(f"\nTrain loss: {train_loss:.5f} | Train Acc: {train_acc:.5f} | Test loss: {test_loss:.5f} | Test Acc: {test_acc:.5f} |")
#####################################################################################################################
'''
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
plt.plot(results['train_loss'], label= 'train')
plt.plot(results['test_loss'], label= 'test')
plt.title('loss curve for train and test')
plt.legend()
plt.subplot(1,2,2)
plt.plot(results['train_accuracy'], label= 'train')
plt.plot(results['test_accuracy'], label= 'test')
plt.title('accuracy score for train and test')
plt.legend()
'''
#####################################################################################################################
new_data= 'I have been having burning pain anytime i am peeing, what could be the issue?'
transformed_new= vectorizer.transform([new_data])
transformed_new= torch.tensor(transformed_new.toarray()).to(torch.float32).to('cuda')
model.eval()
with torch.inference_mode():
y_logits=model(transformed_new).to('cuda')
test_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1).to('cuda')
test_pred= target_dict[test_preds.item()]
print(f'based on your symptoms, I believe you are having {test_pred}')
target_dir_path = Path('')
target_dir_path.mkdir(parents=True,
exist_ok=True)
model_path= target_dir_path / 'pretrained_gru_model.pth'
torch.save(obj=model.state_dict(),f= model_path)
print('########### model saved ###########')
##################################################################################################################### |