File size: 7,559 Bytes
62c3c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e811f4
 
62c3c41
 
 
5e811f4
 
62c3c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e811f4
62c3c41
 
 
 
5e811f4
62c3c41
 
 
 
 
 
 
 
 
 
 
 
5e811f4
62c3c41
 
 
5e811f4
62c3c41
5e811f4
62c3c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e811f4
 
 
62c3c41
5e811f4
62c3c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e811f4
62c3c41
 
5e811f4
 
62c3c41
 
 
5e811f4
62c3c41
 
5e811f4
62c3c41
5e811f4
62c3c41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

import torch
from torch import nn
import pandas as pd
from pathlib import Path
import matplotlib.pyplot as plt
from torch.nn.modules.loss import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from sklearn.metrics import accuracy_score, f1_score
from sklearn.model_selection import train_test_split
#####################################################################################################################

def preprocess_data(label_X, target_y):
    preprocessed= TensorDataset(label_X, target_y)
    return preprocessed

def dataloader(dataset, batch_size, shuffle, num_workers):
    dataloader= DataLoader(dataset=dataset,
                           batch_size=batch_size,
                           shuffle= shuffle,
                           num_workers=num_workers)
    return (dataloader)

class RNN_model(nn.Module):
  def __init__(self):
    super().__init__()

    self.rnn= nn.RNN(input_size=1477, hidden_size=240,num_layers=1, nonlinearity= 'relu', bias= True).to('cuda')
    self.output= nn.Linear(in_features=240, out_features=24).to('cuda')

  def forward(self, x):
    y, hidden= self.rnn(x)
    y = y.to('cuda')
    x= self.output(y).to('cuda')
    return(x)
#####################################################################################################################
# import data
df= pd.read_csv('Symptom2Disease_1.csv')

target=['Psoriasis', 'Varicose Veins', 'Typhoid', 'Chicken pox',
       'Impetigo', 'Dengue', 'Fungal infection', 'Common Cold',
       'Pneumonia', 'Dimorphic Hemorrhoids', 'Arthritis', 'Acne',
       'Bronchial Asthma', 'Hypertension', 'Migraine',
       'Cervical spondylosis', 'Jaundice', 'Malaria',
       'urinary tract infection', 'allergy',
       'gastroesophageal reflux disease', 'drug reaction',
       'peptic ulcer disease', 'diabetes']
target_dict= {i:j for i,j in enumerate(sorted(target))}
df['label']= df['label'].replace({j:i for i,j in enumerate(sorted(target))})
df.drop('Unnamed: 0', axis= 1, inplace= True)
df.duplicated().sum()
df[df.duplicated]
df.drop_duplicates(inplace= True)
df['label'].value_counts()
#####################################################################################################################
train_data, test_data= train_test_split(df, test_size=0.15, random_state=42 )
train_data['label'].value_counts().sort_index()
test_data['label'].value_counts().sort_index()
#vectorizer= nltk_u.vectorizer()
from sklearn.feature_extraction.text import TfidfVectorizer
from spacy.lang.de.stop_words import STOP_WORDS
vectorizer = TfidfVectorizer(stop_words=list(STOP_WORDS))
vectorizer.fit(train_data.text)
vectorizer.get_feature_names_out()[: 100]
vectorizer= vectorizer
data_input= vectorizer.transform(train_data.text)
test_data_input= vectorizer.transform(test_data.text)
#####################################################################################################################
# Convert vectors to tensors
input_data_tensors= torch.tensor(data_input.toarray()).to(torch.float32)
test_data_tensors= torch.tensor(test_data_input.toarray()).to(torch.float32)
train_data_output= torch.tensor(train_data['label'].values)
test_data_output= torch.tensor(test_data['label'].values)
train_dataset= preprocess_data(input_data_tensors, train_data_output)
test_dataset= preprocess_data(test_data_tensors, test_data_output)
train_dataloader= dataloader(dataset=train_dataset,
                                             batch_size=32, shuffle= True, num_workers=2)
test_dataloader= dataloader(dataset=test_dataset,
                                             batch_size=32, shuffle= False, num_workers=2)
text, target= next(iter(train_dataloader))
#####################################################################################################################
if torch.cuda.is_available():
    device = "cuda"
    print(f'################################################################# device: {device}#################################################################')
else:
    device = "cpu"
#####################################################################################################################
model= RNN_model().to(device)
loss_fn= CrossEntropyLoss()
optimizer= torch.optim.SGD(model.parameters(), lr= 0.1, weight_decay=0)
#####################################################################################################################
## train model
epoch= 300

results= {
      "train_loss": [],
      "train_accuracy": [],
      "test_loss": [],
      "test_accuracy": []
      }

for i in range(epoch):
  train_loss=0
  train_acc=0
  for batch, (X, y) in enumerate(train_dataloader):
    X, y= X.to('cuda'), y.to('cuda')
    # Train the model
    model.train()
    optimizer.zero_grad()
    y_logits= model(X).to('cuda')
    # Calculate the loss
    loss= loss_fn(y_logits, y).to('cuda')
    train_loss += loss
    # ypreds
    y_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1)
    accuracy = accuracy_score(y.cpu(), y_preds.cpu())
    train_acc += accuracy
    # zero grad
    optimizer.zero_grad()
    # Loss backward
    loss.backward()
    # Optimizer step
    optimizer.step()
  train_loss /= len(train_dataloader)
  train_acc /=len(train_dataloader)
  test_loss = 0
  test_acc=0
  model.eval()
  with torch.inference_mode():
    for X, y in test_dataloader:
      X, y= X.to('cuda'), y.to('cuda')
      y_logits= model(X).to('cuda')
      loss= loss_fn(y_logits, y).to('cuda')
      test_loss += loss
      test_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1).to('cuda')
      accuracy = accuracy_score(y.cpu(), test_preds.cpu())
      test_acc += accuracy
    test_loss /= len(test_dataloader)
    test_acc /= len(test_dataloader)

  results['train_loss'].append(train_loss)
  results['train_accuracy'].append(train_acc)
  results['test_loss'].append(test_loss)
  results['test_accuracy'].append(test_acc)
  if i % 50 == 0:
    print(f"\nTrain loss: {train_loss:.5f} | Train Acc: {train_acc:.5f} | Test loss: {test_loss:.5f} | Test Acc: {test_acc:.5f} |")

#####################################################################################################################
'''
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
plt.plot(results['train_loss'], label= 'train')
plt.plot(results['test_loss'], label= 'test')
plt.title('loss curve for train and test')
plt.legend()
plt.subplot(1,2,2)
plt.plot(results['train_accuracy'], label= 'train')
plt.plot(results['test_accuracy'], label= 'test')
plt.title('accuracy score for train and test')
plt.legend()
'''
#####################################################################################################################
new_data= 'I have been having burning pain anytime i am peeing, what could be the issue?'
transformed_new= vectorizer.transform([new_data])
transformed_new= torch.tensor(transformed_new.toarray()).to(torch.float32).to('cuda')
model.eval()
with torch.inference_mode():
  y_logits=model(transformed_new).to('cuda')
  test_preds= torch.argmax(torch.softmax(y_logits, dim=1), dim=1).to('cuda')
  test_pred= target_dict[test_preds.item()]
  print(f'based on your symptoms, I believe you are having {test_pred}')

target_dir_path = Path('')
target_dir_path.mkdir(parents=True,
                      exist_ok=True)
model_path= target_dir_path / 'pretrained_gru_model.pth'
torch.save(obj=model.state_dict(),f= model_path)
print('########### model saved ###########')
#####################################################################################################################