Spaces:
Sleeping
Sleeping
Create text_to_image.py
Browse files- text_to_image.py +52 -0
text_to_image.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.tools.base import Tool, get_default_device
|
2 |
+
from transformers.utils import is_accelerate_available
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
6 |
+
|
7 |
+
|
8 |
+
TEXT_TO_IMAGE_DESCRIPTION = (
|
9 |
+
"This is a tool that creates an image according to a prompt, which is a text description. It takes an input named `prompt` which "
|
10 |
+
"contains the image description and outputs an image."
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
class TextToImageTool(Tool):
|
15 |
+
default_checkpoint = "runwayml/stable-diffusion-v1-5"
|
16 |
+
description = TEXT_TO_IMAGE_DESCRIPTION
|
17 |
+
inputs = ['text']
|
18 |
+
outputs = ['image']
|
19 |
+
|
20 |
+
def __init__(self, device=None, **hub_kwargs) -> None:
|
21 |
+
if not is_accelerate_available():
|
22 |
+
raise ImportError("Accelerate should be installed in order to use tools.")
|
23 |
+
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
self.device = device
|
27 |
+
self.pipeline = None
|
28 |
+
self.hub_kwargs = hub_kwargs
|
29 |
+
|
30 |
+
def setup(self):
|
31 |
+
if self.device is None:
|
32 |
+
self.device = get_default_device()
|
33 |
+
|
34 |
+
self.pipeline = DiffusionPipeline.from_pretrained(self.default_checkpoint)
|
35 |
+
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(self.pipeline.scheduler.config)
|
36 |
+
self.pipeline.to(self.device)
|
37 |
+
|
38 |
+
if self.device.type == "cuda":
|
39 |
+
self.pipeline.to(torch_dtype=torch.float16)
|
40 |
+
|
41 |
+
self.is_initialized = True
|
42 |
+
|
43 |
+
def __call__(self, prompt):
|
44 |
+
if not self.is_initialized:
|
45 |
+
self.setup()
|
46 |
+
|
47 |
+
negative_prompt = "low quality, bad quality, deformed, low resolution"
|
48 |
+
added_prompt = " , highest quality, highly realistic, very high resolution"
|
49 |
+
|
50 |
+
return self.pipeline(prompt + added_prompt, negative_prompt=negative_prompt, num_inference_steps=25).images[0]
|
51 |
+
|
52 |
+
|