#Navigate to your user folder cd $env:USERPROFILE\AppData\Local\Docker\wsl\data #Enter the following command resize-vhd -Path .\ext4.vhdx -SizeBytes 300GB, after that I was able to continue building with docker-compose! FROM python:latest AS builder RUN apt update -y RUN apt install -y git git-lfs make gcc g++ libgmp-dev libmpfr-dev libmpc-dev RUN git lfs install RUN git clone https://github.com/ggerganov/llama.cpp RUN cd llama.cpp && make RUN git clone https://huggingface.co./nyanko7/LLaMA-7B RUN ls -la RUN cp -r ./LLaMA-7B ./llama.cpp/models RUN ls -la ./llama.cpp/models/LLaMA-7B # convert the 7B model to ggml FP16 format WORKDIR llama.cpp RUN python3 -m pip install -r requirements.txt RUN python3 convert.py ./models/LLaMA-7B # quantize the model to 4-bits (using q4_0 method) RUN mkdir ./models/7B/ RUN ./quantize ./models/LLaMA-7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin q4_0 FROM tensorflow/tensorflow:latest-gpu WORKDIR /app COPY --from=builder /llama.cpp//models/7B/ ./mymodels/LLaMA-7B # RUN apt-get upgrade -y RUN apt update -y RUN apt install -y git git-lfs RUN apt install -y make wget git gcc g++ lhasa libgmp-dev libmpfr-dev libmpc-dev flex bison gettext texinfo ncurses-dev autoconf rsync COPY ./requirements.txt requirements.txt RUN pip install -r requirements.txt COPY ./app . #RUN python load_docs.py RUN --mount=type=secret,id=OPENAI_API_KEY \ cat /run/secrets/OPENAI_API_KEY > .openaiapikey RUN mkdir /.cache RUN mkdir /nltk_data RUN mkdir /VectorStore RUN mkdir /app/.cache RUN ls -la RUN python run.py RUN chmod 777 /VectorStore RUN chmod 777 /nltk_data RUN chmod 777 /.cache RUN chmod 777 /app/.cache CMD ["streamlit", "run", "app.py", "--server.port=7860"] #CMD ls -la EXPOSE 7860