Spaces:
Sleeping
Sleeping
Add files
Browse files- .pre-commit-config.yaml +55 -0
- .vscode/settings.json +26 -0
- README.md +1 -1
- app.py +136 -0
- requirements.txt +12 -0
- style.css +11 -0
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.5.0
|
4 |
+
hooks:
|
5 |
+
- id: check-executables-have-shebangs
|
6 |
+
- id: check-json
|
7 |
+
- id: check-merge-conflict
|
8 |
+
- id: check-shebang-scripts-are-executable
|
9 |
+
- id: check-toml
|
10 |
+
- id: check-yaml
|
11 |
+
- id: end-of-file-fixer
|
12 |
+
- id: mixed-line-ending
|
13 |
+
args: ["--fix=lf"]
|
14 |
+
- id: requirements-txt-fixer
|
15 |
+
- id: trailing-whitespace
|
16 |
+
- repo: https://github.com/myint/docformatter
|
17 |
+
rev: v1.7.5
|
18 |
+
hooks:
|
19 |
+
- id: docformatter
|
20 |
+
args: ["--in-place"]
|
21 |
+
- repo: https://github.com/pycqa/isort
|
22 |
+
rev: 5.13.2
|
23 |
+
hooks:
|
24 |
+
- id: isort
|
25 |
+
args: ["--profile", "black"]
|
26 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
+
rev: v1.7.1
|
28 |
+
hooks:
|
29 |
+
- id: mypy
|
30 |
+
args: ["--ignore-missing-imports"]
|
31 |
+
additional_dependencies:
|
32 |
+
["types-python-slugify", "types-requests", "types-PyYAML"]
|
33 |
+
- repo: https://github.com/psf/black
|
34 |
+
rev: 23.12.0
|
35 |
+
hooks:
|
36 |
+
- id: black
|
37 |
+
language_version: python3.10
|
38 |
+
args: ["--line-length", "119"]
|
39 |
+
- repo: https://github.com/kynan/nbstripout
|
40 |
+
rev: 0.6.1
|
41 |
+
hooks:
|
42 |
+
- id: nbstripout
|
43 |
+
args:
|
44 |
+
[
|
45 |
+
"--extra-keys",
|
46 |
+
"metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
|
47 |
+
]
|
48 |
+
- repo: https://github.com/nbQA-dev/nbQA
|
49 |
+
rev: 1.7.1
|
50 |
+
hooks:
|
51 |
+
- id: nbqa-black
|
52 |
+
- id: nbqa-pyupgrade
|
53 |
+
args: ["--py37-plus"]
|
54 |
+
- id: nbqa-isort
|
55 |
+
args: ["--float-to-top"]
|
.vscode/settings.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"editor.formatOnSave": true,
|
3 |
+
"files.insertFinalNewline": false,
|
4 |
+
"[python]": {
|
5 |
+
"editor.defaultFormatter": "ms-python.black-formatter",
|
6 |
+
"editor.formatOnType": true,
|
7 |
+
"editor.codeActionsOnSave": {
|
8 |
+
"source.organizeImports": "explicit"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"[jupyter]": {
|
12 |
+
"files.insertFinalNewline": false
|
13 |
+
},
|
14 |
+
"black-formatter.args": [
|
15 |
+
"--line-length=119"
|
16 |
+
],
|
17 |
+
"isort.args": ["--profile", "black"],
|
18 |
+
"flake8.args": [
|
19 |
+
"--max-line-length=119"
|
20 |
+
],
|
21 |
+
"ruff.lint.args": [
|
22 |
+
"--line-length=119"
|
23 |
+
],
|
24 |
+
"notebook.output.scrolling": true,
|
25 |
+
"notebook.formatOnCellExecution": true
|
26 |
+
}
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Nekomata
|
3 |
emoji: 👀
|
4 |
colorFrom: purple
|
5 |
colorTo: indigo
|
|
|
1 |
---
|
2 |
+
title: Nekomata-14B Instruction
|
3 |
emoji: 👀
|
4 |
colorFrom: purple
|
5 |
colorTo: indigo
|
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import os
|
4 |
+
from threading import Thread
|
5 |
+
from typing import Iterator
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import spaces
|
9 |
+
import torch
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
11 |
+
|
12 |
+
DESCRIPTION = """# Nekomata-14B Instruction"""
|
13 |
+
|
14 |
+
if not torch.cuda.is_available():
|
15 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
16 |
+
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
model_id = "rinna/nekomata-14b-instruction"
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
model_id, device_map="auto", trust_remote_code=True, load_in_8bit=True, low_cpu_mem_usage=True
|
23 |
+
)
|
24 |
+
|
25 |
+
MAX_INPUT_TOKENS = 2048
|
26 |
+
|
27 |
+
PROMPT_TEMPLATE = """
|
28 |
+
以下は、タスクを説明する指示と、文脈のある入力の組み合わせです。要求を適切に満たす応答を書きなさい。
|
29 |
+
|
30 |
+
### 指示:
|
31 |
+
{instruction}
|
32 |
+
|
33 |
+
### 入力:
|
34 |
+
{input}
|
35 |
+
|
36 |
+
### 応答:
|
37 |
+
"""
|
38 |
+
|
39 |
+
|
40 |
+
def create_prompt(instruction: str, input_text: str, prompt_template: str = PROMPT_TEMPLATE) -> str:
|
41 |
+
return prompt_template.format(instruction=instruction, input=input_text)
|
42 |
+
|
43 |
+
|
44 |
+
@spaces.GPU
|
45 |
+
@torch.inference_mode()
|
46 |
+
def run(
|
47 |
+
instruction: str,
|
48 |
+
input_text: str,
|
49 |
+
prompt_template: str = PROMPT_TEMPLATE,
|
50 |
+
max_new_tokens: int = 256,
|
51 |
+
temperature: float = 0.5,
|
52 |
+
top_p: float = 0.95,
|
53 |
+
repetition_penalty: float = 1.0,
|
54 |
+
) -> Iterator[str]:
|
55 |
+
prompt = create_prompt(instruction, input_text, prompt_template)
|
56 |
+
input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
57 |
+
if input_ids.shape[-1] > MAX_INPUT_TOKENS:
|
58 |
+
raise gr.Error(f"Input exceeds maximum number of tokens ({MAX_INPUT_TOKENS})")
|
59 |
+
|
60 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
61 |
+
generate_kwargs = dict(
|
62 |
+
{"input_ids": input_ids.to(model.device)},
|
63 |
+
streamer=streamer,
|
64 |
+
max_new_tokens=max_new_tokens,
|
65 |
+
temperature=temperature,
|
66 |
+
top_p=top_p,
|
67 |
+
repetition_penalty=repetition_penalty,
|
68 |
+
do_sample=True,
|
69 |
+
pad_token_id=tokenizer.pad_token_id,
|
70 |
+
bos_token_id=tokenizer.bos_token_id,
|
71 |
+
eos_token_id=tokenizer.eos_token_id,
|
72 |
+
)
|
73 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
74 |
+
t.start()
|
75 |
+
|
76 |
+
outputs = []
|
77 |
+
for text in streamer:
|
78 |
+
outputs.append(text)
|
79 |
+
yield "".join(outputs)
|
80 |
+
|
81 |
+
|
82 |
+
def process_example(instruction: str, input_text: str) -> Iterator[str]:
|
83 |
+
yield from run(instruction, input_text)
|
84 |
+
|
85 |
+
|
86 |
+
with gr.Blocks(css="style.css") as demo:
|
87 |
+
gr.Markdown(DESCRIPTION)
|
88 |
+
gr.DuplicateButton(
|
89 |
+
value="Duplicate Space for private use",
|
90 |
+
elem_id="duplicate-button",
|
91 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
92 |
+
)
|
93 |
+
|
94 |
+
with gr.Row():
|
95 |
+
with gr.Column():
|
96 |
+
instruction = gr.Textbox(label="Instruction", lines=5)
|
97 |
+
input_text = gr.Textbox(label="Input", lines=5)
|
98 |
+
run_button = gr.Button()
|
99 |
+
|
100 |
+
with gr.Accordion(label="Advanced Options", open=False):
|
101 |
+
prompt_template = gr.Textbox(label="Prompt Template", lines=10, value=PROMPT_TEMPLATE)
|
102 |
+
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=1, maximum=1024, step=1, value=256)
|
103 |
+
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=2.0, step=0.01, value=0.5)
|
104 |
+
top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, step=0.01, value=0.95)
|
105 |
+
repetition_penalty = gr.Slider(
|
106 |
+
label="Repetition Penalty", minimum=0.0, maximum=2.0, step=0.01, value=1.0
|
107 |
+
)
|
108 |
+
|
109 |
+
with gr.Column():
|
110 |
+
output = gr.Textbox(label="Output", lines=10)
|
111 |
+
|
112 |
+
run_button.click(
|
113 |
+
fn=run,
|
114 |
+
inputs=[instruction, input_text, prompt_template, max_new_tokens, temperature, top_p, repetition_penalty],
|
115 |
+
outputs=output,
|
116 |
+
api_name="run",
|
117 |
+
)
|
118 |
+
|
119 |
+
gr.Examples(
|
120 |
+
examples=[
|
121 |
+
[
|
122 |
+
"次の日本語を英語に翻訳してください。",
|
123 |
+
"大規模言語モデル(だいきぼげんごモデル、英: large language model、LLM)は、多数のパラメータ(数千万から数十億)を持つ人工ニューラルネットワークで構成されるコンピュータ言語モデルで、膨大なラベルなしテキストを使用して自己教師あり学習または半教師あり学習によって訓練が行われる。",
|
124 |
+
],
|
125 |
+
["以下のトピックに関する詳細な情報を提供してください。", "夢オチとは何かについて教えてください。"],
|
126 |
+
["以下のトピックに関する詳細な情報を提供してください。", "暴れん坊将軍について教えてください。"],
|
127 |
+
],
|
128 |
+
inputs=[instruction, input_text],
|
129 |
+
outputs=output,
|
130 |
+
fn=process_example,
|
131 |
+
cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
|
132 |
+
api_name=False,
|
133 |
+
)
|
134 |
+
|
135 |
+
if __name__ == "__main__":
|
136 |
+
demo.queue(max_size=20).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.25.0
|
2 |
+
bitsandbytes==0.41.2.post2
|
3 |
+
einops==0.6.1
|
4 |
+
gradio==4.11.0
|
5 |
+
protobuf==4.25.1
|
6 |
+
scipy==1.11.4
|
7 |
+
sentencepiece==0.1.99
|
8 |
+
spaces==0.19.2
|
9 |
+
tiktoken==0.5.2
|
10 |
+
torch==2.0.0
|
11 |
+
transformers==4.36.2
|
12 |
+
transformers-stream-generator==0.0.4
|
style.css
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
display: block;
|
4 |
+
}
|
5 |
+
|
6 |
+
#duplicate-button {
|
7 |
+
margin: auto;
|
8 |
+
color: #fff;
|
9 |
+
background: #1565c0;
|
10 |
+
border-radius: 100vh;
|
11 |
+
}
|