File size: 4,356 Bytes
879567b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import gradio as gr
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
embeddings_hotels = np.load("normalized_embeddings.pkl", allow_pickle=True)
embeddings_ar = np.load("normalized_embeddings_ar.pkl", allow_pickle=True)
df_hotels = pd.read_csv("hotel_dataset_processed.csv")
df_ar = pd.read_csv("df_ar_1.csv")
def search_in_combined(query_text, model, k=5):
query_embedding = model.encode(query_text, convert_to_tensor=True).cpu().numpy().reshape(1, -1)
similarities_hotels = cosine_similarity(query_embedding, embeddings_hotels).flatten()
similarities_ar = cosine_similarity(query_embedding, embeddings_ar).flatten()
top_indices_hotels = np.argsort(similarities_hotels)[::-1][:k]
top_indices_ar = np.argsort(similarities_ar)[::-1][:k]
top_hotels = df_hotels.iloc[top_indices_hotels].copy()
top_ar = df_ar.iloc[top_indices_ar].copy()
top_hotels["similarity"] = similarities_hotels[top_indices_hotels]
top_ar["similarity"] = similarities_ar[top_indices_ar]
combined_top_results = pd.concat([top_hotels, top_ar], ignore_index=True)
combined_top_results = combined_top_results.sort_values(by="similarity", ascending=False)
return combined_top_results.head(k)
def format_results(results):
formatted_results = []
for _, row in results.iterrows():
if not pd.isna(row.get("hotel_name", "")):
google_maps_url = f"https://www.google.com/maps/search/?api=1&query={row.get('hotel_name', 'N/A').replace(' ', '+')}"
result = (
f"<b>Hotel Name</b>: {row.get('hotel_name', 'N/A')}<br>"
f"<b>Description</b>: {row.get('hotel_description', 'N/A')}<br>"
f"<b>Review Title</b>: {row.get('review_title', 'N/A')}<br>"
f"<b>Review Text</b>: {row.get('review_text', 'N/A')}<br>"
f"<b>Rating</b>: {row.get('rate', 'N/A')}<br>"
f"<b>Trip Date</b>: {row.get('tripdate', 'N/A')}<br>"
f"<b>Price Range</b>: {row.get('price_range', 'N/A')}<br>"
f"<b>Location</b>: {row.get('locality', 'N/A')}, {row.get('country', 'N/A')}<br>"
f"<b>Hotel Website URL</b>: <a href='{row.get('hotel_url', 'N/A')}' target='_blank'>Link</a><br>"
f"<b>Google Maps</b>: <a href='{google_maps_url}' target='_blank'>View on Maps</a><br>"
f"<b>Image</b>: <img src='{row.get('hotel_image', 'N/A')}' width='200' /><br>"
)
else:
google_maps_url = f"https://www.google.com/maps/search/?api=1&query={row.get('name', 'N/A').replace(' ', '+')}"
result = (
f"<b>Name</b>: {row.get('name', 'N/A')}<br>"
f"<b>Location</b>: {row.get('location', 'N/A')}<br>"
f"<b>Price</b>: {row.get('price', 'N/A')}<br>"
f"<b>Price For</b>: {row.get('price_for', 'N/A')}<br>"
f"<b>Room Type</b>: {row.get('room_type', 'N/A')}<br>"
f"<b>Beds</b>: {row.get('beds', 'N/A')}<br>"
f"<b>Rating</b>: {row.get('rating', 'N/A')}<br>"
f"<b>Rating Title</b>: {row.get('rating_title', 'N/A')}<br>"
f"<b>Google Maps</b>: <a href='{google_maps_url}' target='_blank'>View on Maps</a><br>"
f"<b>Number of Ratings</b>: {row.get('number_of_ratings', 'N/A')}<br>"
f"<b>Hotel Website URL</b>: <a href='{row.get('url', 'N/A')}' target='_blank'>Link</a><br>"
f"<b>Additional Info</b>: {row.get('cm', 'N/A')}<br>"
)
formatted_results.append(result)
return "<br><br>".join(formatted_results)
def search_interface(query_text):
results = search_in_combined(query_text, model, 7)
return format_results(results)
iface = gr.Interface(
fn=search_interface,
inputs=gr.Textbox(label="Enter your search query"),
outputs=gr.HTML(label="Search Results"),
title="Hotel and Arabic Data Search",
description="Enter a query to search for hotels or Arabic data. The results will show the top matches based on similarity and provide a Google Maps URL for hotel locations.",
examples=["Riyadh", "Deluxe Room"]
)
iface.launch()
|