dance-diffusion / app.py
Fauno15's picture
center footer (#6)
80dd0b9
raw
history blame
2.17 kB
import gradio as gr
from diffusers import DiffusionPipeline
import scipy.io.wavfile
def load_model(model_id):
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline = pipeline.to("cuda")
return pipeline
def denoise(length_sec,model):
pipeline = load_model(model)
audios = pipeline(audio_length_in_s=length_sec).audios
for audio in audios:
scipy.io.wavfile.write("test.wav", pipeline.unet.sample_rate, audio.transpose())
return "test.wav"
block = gr.Blocks()
with block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Dance Diffusion
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Dance Diffusion is the first in a suite of generative audio tools for producers and musicians to be released by Harmonai
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
length = gr.Slider(1.0, 6.0, value=3.0, step=0.5, label="Audio length in seconds")
model = gr.Dropdown(choices=["harmonai/maestro-150k", "harmonai/jmann-small-190k", "harmonai/honk-140k", "harmonai/unlocked-250k","harmonai/jmann-large-580k","harmonai/glitch-440k"], value="harmonai/maestro-150k",type="value", label="Model")
out = gr.Audio(label="Output", type="filepath")
btn = gr.Button("Submit").style(full_width=True)
btn.click(denoise, inputs=[length,model], outputs=out)
gr.HTML('''
<div class="footer" style="text-align: center; max-width: 700px; margin: 0 auto;">
<p>Model by <a href="https://huggingface.co./harmonai" style="text-decoration: underline;" target="_blank">Harmonai</a>
</p>
</div>
''')
block.launch(debug=True)