harishnair04 commited on
Commit
c9c8abc
1 Parent(s): ae34a2c

feat: update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -50
app.py CHANGED
@@ -1,64 +1,64 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
  respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import keras
4
+ import keras_nlp
5
+ import os
6
+ os.environ["KERAS_BACKEND"] = "jax"
7
 
8
  """
9
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
10
  """
11
+ css = """
12
 
13
+ html, body {
14
+ margin: 0;
15
+ padding: 0;
16
+ height: 100%;
17
+ overflow: hidden;
18
+ }
19
+ body::before {
20
+ content: '';
21
+ position: fixed;
22
+ top: 0;
23
+ left: 0;
24
+ width: 100vw;
25
+ height: 100vh;
26
+ background-image: url('https://png.pngtree.com/background/20230413/original/pngtree-medical-color-cartoon-blank-background-picture-image_2422159.jpg');
27
+ background-size: cover;
28
+ background-repeat: no-repeat;
29
+ opacity: 0.60;
30
+ background-position: center;
31
+ z-index: -1;
32
+ }
33
+ .gradio-container {
34
+ display: flex;
35
+ flex-direction: column;
36
+ justify-content: center;
37
+ align-items: center;
38
+ height: 100vh;
39
+ }
40
 
41
+ """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
+ gemma_model = keras_nlp.models.GemmaCausalLM.from_preset("hf://harishnair04/gemma_instruct_medtr_2b")
 
44
 
45
+ def respond(input):
46
+ template = "Instruction:\n{instruction}\n\nResponse:\n{response}"
47
+ prompt = template.format(
48
+ instruction=input,
49
+ response="",
50
+ )
51
+ out = gemma_model.generate(prompt, max_length=1024)
52
+ ind = out.index('Response') + len('Response')+2
53
+ return out[ind:]
54
 
55
+ chat_interface = gr.Interface(
 
 
 
56
  respond,
57
+ inputs="text",
58
+ outputs="text",
59
+ title="Gemma instruct 2b_en finetuned on medical transcripts",
60
+ description="Gemma instruct 2b_en finetuned on medical transcripts",
61
+ css=css
 
 
 
 
 
 
 
62
  )
63
 
64
+ chat_interface.launch()