Spaces:
Running
on
L4
Running
on
L4
haoheliu
commited on
Commit
·
412929c
1
Parent(s):
39711bd
update code
Browse files- .gitignore +2 -1
- app.py +4 -3
- audioldm/ldm.py +1 -1
- audioldm/pipeline.py +9 -3
.gitignore
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
*.pyc
|
2 |
__pycache__
|
3 |
-
test.py
|
|
|
|
1 |
*.pyc
|
2 |
__pycache__
|
3 |
+
test.py
|
4 |
+
flagged
|
app.py
CHANGED
@@ -4,17 +4,18 @@ from audioldm import text_to_audio, seed_everything, build_model
|
|
4 |
|
5 |
audioldm = build_model()
|
6 |
|
7 |
-
def text2audio(text, duration, guidance_scale):
|
8 |
# print(text, length, guidance_scale)
|
9 |
-
waveform = text_to_audio(audioldm, text, duration=duration, guidance_scale=guidance_scale, n_candidate_gen_per_text=1) # [bs, 1, samples]
|
10 |
waveform = [(16000, wave[0]) for wave in waveform]
|
11 |
# waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))]
|
12 |
return waveform
|
13 |
|
14 |
iface = gr.Interface(fn=text2audio, inputs=[
|
15 |
gr.Textbox(value="A man is speaking in a huge room", max_lines=1),
|
16 |
-
gr.Slider(2,
|
17 |
gr.Slider(0, 5, value=2.5, step=0.5),
|
|
|
18 |
], outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")]
|
19 |
)
|
20 |
iface.launch(share=True)
|
|
|
4 |
|
5 |
audioldm = build_model()
|
6 |
|
7 |
+
def text2audio(text, duration, guidance_scale, random_seed):
|
8 |
# print(text, length, guidance_scale)
|
9 |
+
waveform = text_to_audio(audioldm, text, random_seed, duration=duration, guidance_scale=guidance_scale, n_candidate_gen_per_text=1) # [bs, 1, samples]
|
10 |
waveform = [(16000, wave[0]) for wave in waveform]
|
11 |
# waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))]
|
12 |
return waveform
|
13 |
|
14 |
iface = gr.Interface(fn=text2audio, inputs=[
|
15 |
gr.Textbox(value="A man is speaking in a huge room", max_lines=1),
|
16 |
+
gr.Slider(2.5, 10, value=5, step=2.5),
|
17 |
gr.Slider(0, 5, value=2.5, step=0.5),
|
18 |
+
gr.Number(value=42)
|
19 |
], outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")]
|
20 |
)
|
21 |
iface.launch(share=True)
|
audioldm/ldm.py
CHANGED
@@ -659,7 +659,7 @@ class LatentDiffusion(DDPM):
|
|
659 |
# os.makedirs(waveform_save_path, exist_ok=True)
|
660 |
# print("Waveform save path: ", waveform_save_path)
|
661 |
|
662 |
-
with self.ema_scope("
|
663 |
for batch in batchs:
|
664 |
z, c = self.get_input(
|
665 |
batch,
|
|
|
659 |
# os.makedirs(waveform_save_path, exist_ok=True)
|
660 |
# print("Waveform save path: ", waveform_save_path)
|
661 |
|
662 |
+
with self.ema_scope("Generate"):
|
663 |
for batch in batchs:
|
664 |
z, c = self.get_input(
|
665 |
batch,
|
audioldm/pipeline.py
CHANGED
@@ -6,9 +6,10 @@ import argparse
|
|
6 |
import yaml
|
7 |
import torch
|
8 |
|
9 |
-
from audioldm import LatentDiffusion
|
10 |
from audioldm.utils import default_audioldm_config
|
11 |
|
|
|
12 |
import time
|
13 |
|
14 |
def make_batch_for_text_to_audio(text, batchsize=2):
|
@@ -18,7 +19,7 @@ def make_batch_for_text_to_audio(text, batchsize=2):
|
|
18 |
fbank = torch.zeros((batchsize, 1024, 64)) # Not used, here to keep the code format
|
19 |
stft = torch.zeros((batchsize, 1024, 512)) # Not used
|
20 |
waveform = torch.zeros((batchsize, 160000)) # Not used
|
21 |
-
fname = ["
|
22 |
batch = (
|
23 |
fbank,
|
24 |
stft,
|
@@ -59,9 +60,14 @@ def build_model(config=None):
|
|
59 |
latent_diffusion.cond_stage_model.embed_mode = "text"
|
60 |
return latent_diffusion
|
61 |
|
|
|
|
|
62 |
|
63 |
-
def text_to_audio(latent_diffusion, text, duration=10, batchsize=2, guidance_scale=2.5, n_candidate_gen_per_text=3, config=None):
|
|
|
64 |
batch = make_batch_for_text_to_audio(text, batchsize=batchsize)
|
|
|
|
|
65 |
with torch.no_grad():
|
66 |
waveform = latent_diffusion.generate_sample(
|
67 |
[batch],
|
|
|
6 |
import yaml
|
7 |
import torch
|
8 |
|
9 |
+
from audioldm import LatentDiffusion, seed_everything
|
10 |
from audioldm.utils import default_audioldm_config
|
11 |
|
12 |
+
|
13 |
import time
|
14 |
|
15 |
def make_batch_for_text_to_audio(text, batchsize=2):
|
|
|
19 |
fbank = torch.zeros((batchsize, 1024, 64)) # Not used, here to keep the code format
|
20 |
stft = torch.zeros((batchsize, 1024, 512)) # Not used
|
21 |
waveform = torch.zeros((batchsize, 160000)) # Not used
|
22 |
+
fname = [""] * batchsize # Not used
|
23 |
batch = (
|
24 |
fbank,
|
25 |
stft,
|
|
|
60 |
latent_diffusion.cond_stage_model.embed_mode = "text"
|
61 |
return latent_diffusion
|
62 |
|
63 |
+
def duration_to_latent_t_size(duration):
|
64 |
+
return int(duration * 25.6)
|
65 |
|
66 |
+
def text_to_audio(latent_diffusion, text, seed=42, duration=10, batchsize=2, guidance_scale=2.5, n_candidate_gen_per_text=3, config=None):
|
67 |
+
seed_everything(int(seed))
|
68 |
batch = make_batch_for_text_to_audio(text, batchsize=batchsize)
|
69 |
+
|
70 |
+
latent_diffusion.latent_t_size = duration_to_latent_t_size(duration)
|
71 |
with torch.no_grad():
|
72 |
waveform = latent_diffusion.generate_sample(
|
73 |
[batch],
|