Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,325 Bytes
2ec72fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# --------
#
# Modified 2024 by the Tripo AI and Stability AI Team.
#
# Copyright (c) 2024 Tripo AI & Stability AI
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from ...utils import BaseModule
from .basic_transformer_block import BasicTransformerBlock
class Transformer1D(BaseModule):
@dataclass
class Config(BaseModule.Config):
num_attention_heads: int = 16
attention_head_dim: int = 88
in_channels: Optional[int] = None
out_channels: Optional[int] = None
num_layers: int = 1
dropout: float = 0.0
norm_num_groups: int = 32
cross_attention_dim: Optional[int] = None
attention_bias: bool = False
activation_fn: str = "geglu"
only_cross_attention: bool = False
double_self_attention: bool = False
upcast_attention: bool = False
norm_type: str = "layer_norm"
norm_elementwise_affine: bool = True
gradient_checkpointing: bool = False
cfg: Config
def configure(self) -> None:
self.num_attention_heads = self.cfg.num_attention_heads
self.attention_head_dim = self.cfg.attention_head_dim
inner_dim = self.num_attention_heads * self.attention_head_dim
linear_cls = nn.Linear
# 2. Define input layers
self.in_channels = self.cfg.in_channels
self.norm = torch.nn.GroupNorm(
num_groups=self.cfg.norm_num_groups,
num_channels=self.cfg.in_channels,
eps=1e-6,
affine=True,
)
self.proj_in = linear_cls(self.cfg.in_channels, inner_dim)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
self.num_attention_heads,
self.attention_head_dim,
dropout=self.cfg.dropout,
cross_attention_dim=self.cfg.cross_attention_dim,
activation_fn=self.cfg.activation_fn,
attention_bias=self.cfg.attention_bias,
only_cross_attention=self.cfg.only_cross_attention,
double_self_attention=self.cfg.double_self_attention,
upcast_attention=self.cfg.upcast_attention,
norm_type=self.cfg.norm_type,
norm_elementwise_affine=self.cfg.norm_elementwise_affine,
)
for d in range(self.cfg.num_layers)
]
)
# 4. Define output layers
self.out_channels = (
self.cfg.in_channels
if self.cfg.out_channels is None
else self.cfg.out_channels
)
self.proj_out = linear_cls(inner_dim, self.cfg.in_channels)
self.gradient_checkpointing = self.cfg.gradient_checkpointing
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
):
"""
The [`Transformer1DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
Returns:
torch.FloatTensor
"""
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (
1 - encoder_attention_mask.to(hidden_states.dtype)
) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
batch, _, seq_len = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 1).reshape(
batch, seq_len, inner_dim
)
hidden_states = self.proj_in(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
block,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
use_reentrant=False,
)
else:
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
# 3. Output
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, seq_len, inner_dim)
.permute(0, 2, 1)
.contiguous()
)
output = hidden_states + residual
return output
|