import requests import torch from PIL import Image import hashlib import tempfile import unittest from io import BytesIO from pathlib import Path from unittest.mock import patch from urllib3 import HTTPResponse from urllib3._collections import HTTPHeaderDict import open_clip from open_clip.pretrained import download_pretrained_from_url class DownloadPretrainedTests(unittest.TestCase): def create_response(self, data, status_code=200, content_type='application/octet-stream'): fp = BytesIO(data) headers = HTTPHeaderDict({ 'Content-Type': content_type, 'Content-Length': str(len(data)) }) raw = HTTPResponse(fp, preload_content=False, headers=headers, status=status_code) return raw @patch('open_clip.pretrained.urllib') def test_download_pretrained_from_url_from_openaipublic(self, urllib): file_contents = b'pretrained model weights' expected_hash = hashlib.sha256(file_contents).hexdigest() urllib.request.urlopen.return_value = self.create_response(file_contents) with tempfile.TemporaryDirectory() as root: url = f'https://openaipublic.azureedge.net/clip/models/{expected_hash}/RN50.pt' download_pretrained_from_url(url, root) urllib.request.urlopen.assert_called_once() @patch('open_clip.pretrained.urllib') def test_download_pretrained_from_url_from_openaipublic_corrupted(self, urllib): file_contents = b'pretrained model weights' expected_hash = hashlib.sha256(file_contents).hexdigest() urllib.request.urlopen.return_value = self.create_response(b'corrupted pretrained model') with tempfile.TemporaryDirectory() as root: url = f'https://openaipublic.azureedge.net/clip/models/{expected_hash}/RN50.pt' with self.assertRaisesRegex(RuntimeError, r'checksum does not not match'): download_pretrained_from_url(url, root) urllib.request.urlopen.assert_called_once() @patch('open_clip.pretrained.urllib') def test_download_pretrained_from_url_from_openaipublic_valid_cache(self, urllib): file_contents = b'pretrained model weights' expected_hash = hashlib.sha256(file_contents).hexdigest() urllib.request.urlopen.return_value = self.create_response(file_contents) with tempfile.TemporaryDirectory() as root: local_file = Path(root) / 'RN50.pt' local_file.write_bytes(file_contents) url = f'https://openaipublic.azureedge.net/clip/models/{expected_hash}/RN50.pt' download_pretrained_from_url(url, root) urllib.request.urlopen.assert_not_called() @patch('open_clip.pretrained.urllib') def test_download_pretrained_from_url_from_openaipublic_corrupted_cache(self, urllib): file_contents = b'pretrained model weights' expected_hash = hashlib.sha256(file_contents).hexdigest() urllib.request.urlopen.return_value = self.create_response(file_contents) with tempfile.TemporaryDirectory() as root: local_file = Path(root) / 'RN50.pt' local_file.write_bytes(b'corrupted pretrained model') url = f'https://openaipublic.azureedge.net/clip/models/{expected_hash}/RN50.pt' download_pretrained_from_url(url, root) urllib.request.urlopen.assert_called_once() @patch('open_clip.pretrained.urllib') def test_download_pretrained_from_url_from_mlfoundations(self, urllib): file_contents = b'pretrained model weights' expected_hash = hashlib.sha256(file_contents).hexdigest()[:8] urllib.request.urlopen.return_value = self.create_response(file_contents) with tempfile.TemporaryDirectory() as root: url = f'https://github.com/mlfoundations/download/v0.2-weights/rn50-quickgelu-{expected_hash}.pt' download_pretrained_from_url(url, root) urllib.request.urlopen.assert_called_once() @patch('open_clip.pretrained.urllib') def test_download_pretrained_from_url_from_mlfoundations_corrupted(self, urllib): file_contents = b'pretrained model weights' expected_hash = hashlib.sha256(file_contents).hexdigest()[:8] urllib.request.urlopen.return_value = self.create_response(b'corrupted pretrained model') with tempfile.TemporaryDirectory() as root: url = f'https://github.com/mlfoundations/download/v0.2-weights/rn50-quickgelu-{expected_hash}.pt' with self.assertRaisesRegex(RuntimeError, r'checksum does not not match'): download_pretrained_from_url(url, root) urllib.request.urlopen.assert_called_once() @patch('open_clip.pretrained.urllib') def test_download_pretrained_from_hfh(self, urllib): model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:hf-internal-testing/tiny-open-clip-model') tokenizer = open_clip.get_tokenizer('hf-hub:hf-internal-testing/tiny-open-clip-model') img_url = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/coco_sample.png" image = preprocess(Image.open(requests.get(img_url, stream=True).raw)).unsqueeze(0) text = tokenizer(["a diagram", "a dog", "a cat"]) with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features /= image_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True) text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) self.assertTrue(torch.allclose(text_probs, torch.tensor([[0.0597, 0.6349, 0.3053]]), 1e-3))