Spaces:
Running
Running
Upload 2 files
Browse files- cbir_system.py +129 -0
- list_eval_partition.txt +0 -0
cbir_system.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from facenet_pytorch import InceptionResnetV1
|
3 |
+
import torch.nn as nn
|
4 |
+
import torchvision.transforms as tf
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import faiss
|
8 |
+
import h5py
|
9 |
+
import os
|
10 |
+
import random
|
11 |
+
from PIL import Image
|
12 |
+
import matplotlib.cm as cm
|
13 |
+
import matplotlib as mpl
|
14 |
+
|
15 |
+
img_names = []
|
16 |
+
with open('list_eval_partition.txt', 'r') as f:
|
17 |
+
for line in f:
|
18 |
+
img_name, dtype = line.rstrip().split(' ')
|
19 |
+
img_names.append(img_name)
|
20 |
+
|
21 |
+
|
22 |
+
# For a model pretrained on VGGFace2
|
23 |
+
print('Loading model weights ........')
|
24 |
+
|
25 |
+
class SiameseModel(nn.Module):
|
26 |
+
def __init__(self):
|
27 |
+
super().__init__()
|
28 |
+
self.backbone = InceptionResnetV1(pretrained='vggface2')
|
29 |
+
def forward(self, x):
|
30 |
+
x = self.backbone(x)
|
31 |
+
x = torch.nn.functional.normalize(x, dim=1)
|
32 |
+
return x
|
33 |
+
|
34 |
+
model = SiameseModel()
|
35 |
+
model.load_state_dict(torch.load('model.pt', map_location=torch.device('cpu')))
|
36 |
+
model.eval()
|
37 |
+
|
38 |
+
|
39 |
+
# Make FAISS index
|
40 |
+
print('Make index .............')
|
41 |
+
index = faiss.IndexFlatL2(512)
|
42 |
+
|
43 |
+
hf = h5py.File('face_vecs_full.h5', 'r')
|
44 |
+
for key in hf.keys():
|
45 |
+
vec = np.array(hf.get(key))
|
46 |
+
index.add(vec)
|
47 |
+
|
48 |
+
hf.close()
|
49 |
+
|
50 |
+
# Function to search image
|
51 |
+
def image_search(image, k=5):
|
52 |
+
|
53 |
+
transform = tf.Compose([
|
54 |
+
tf.Resize((160, 160)),
|
55 |
+
tf.ToTensor()
|
56 |
+
])
|
57 |
+
|
58 |
+
query_img = transform(image)
|
59 |
+
query_img = torch.unsqueeze(query_img, 0)
|
60 |
+
|
61 |
+
model.eval()
|
62 |
+
query_vec = model(query_img).detach().numpy()
|
63 |
+
|
64 |
+
D, I = index.search(query_vec, k=k)
|
65 |
+
|
66 |
+
retrieval_imgs = []
|
67 |
+
|
68 |
+
FOLDER = 'img_align_celeba'
|
69 |
+
for idx in I[0]:
|
70 |
+
img_file_name = img_names[idx]
|
71 |
+
path = os.path.join(FOLDER, img_file_name)
|
72 |
+
|
73 |
+
image = Image.open(path)
|
74 |
+
retrieval_imgs.append((image, ''))
|
75 |
+
|
76 |
+
return retrieval_imgs
|
77 |
+
|
78 |
+
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
79 |
+
gr.Markdown('''
|
80 |
+
|
81 |
+
|
82 |
+
# Face Image Retrieval with Content-based Retrieval Image (CBIR) & Saliency Map
|
83 |
+
--------
|
84 |
+
|
85 |
+
|
86 |
+
''')
|
87 |
+
|
88 |
+
with gr.Row():
|
89 |
+
with gr.Column():
|
90 |
+
image = gr.Image(type='pil', scale=1)
|
91 |
+
slider = gr.Slider(1, 10, value=5, step=1, label='Number of retrieval image')
|
92 |
+
with gr.Row():
|
93 |
+
btn = gr.Button('Search')
|
94 |
+
clear_btn = gr.ClearButton()
|
95 |
+
|
96 |
+
gallery = gr.Gallery(label='Retrieval Images', columns=[5], show_label=True, scale=2)
|
97 |
+
|
98 |
+
img_dir = './img_align_celeba'
|
99 |
+
examples = random.choices(img_names, k=6)
|
100 |
+
examples = [os.path.join(img_dir, ex) for ex in examples]
|
101 |
+
examples = [Image.open(img) for img in examples]
|
102 |
+
|
103 |
+
with gr.Row():
|
104 |
+
gr.Examples(
|
105 |
+
examples = examples,
|
106 |
+
inputs = image
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
btn.click(image_search,
|
111 |
+
inputs= [image, slider],
|
112 |
+
outputs= [gallery])
|
113 |
+
|
114 |
+
def clear_image():
|
115 |
+
return None
|
116 |
+
|
117 |
+
clear_btn.click(
|
118 |
+
fn = clear_image,
|
119 |
+
inputs = [],
|
120 |
+
outputs = [image]
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
def parse_args():
|
125 |
+
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
demo.launch()
|
129 |
+
|
list_eval_partition.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|