SMS_scam_detection / app.py.working_ocr_selection
hackerbyhobby
updated app to have user choose text or OCR and hide elements
05a7e7d unverified
import gradio as gr
import pytesseract
from PIL import Image
from transformers import pipeline
import re
from langdetect import detect
from deep_translator import GoogleTranslator
# Translator instance
translator = GoogleTranslator(source="auto", target="es")
# 1. Load separate keywords for SMiShing and Other Scam (assumed in English)
with open("smishing_keywords.txt", "r", encoding="utf-8") as f:
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f:
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()]
# 2. Zero-Shot Classification Pipeline
model_name = "joeddav/xlm-roberta-large-xnli"
classifier = pipeline("zero-shot-classification", model=model_name)
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"]
def get_keywords_by_language(text: str):
"""
Detect language using `langdetect` and translate keywords if needed.
"""
snippet = text[:200] # Use a snippet for detection
try:
detected_lang = detect(snippet)
except Exception:
detected_lang = "en" # Default to English if detection fails
if detected_lang == "es":
smishing_in_spanish = [
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS
]
other_scam_in_spanish = [
translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS
]
return smishing_in_spanish, other_scam_in_spanish, "es"
else:
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en"
def boost_probabilities(probabilities: dict, text: str):
"""
Boost probabilities based on keyword matches and presence of URLs.
"""
lower_text = text.lower()
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text)
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text)
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text)
# Example: 30% per found keyword
smishing_boost = 0.30 * smishing_count
other_scam_boost = 0.30 * other_scam_count
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
if found_urls:
# 35% boost for Smishing if there's a URL
smishing_boost += 0.35
p_smishing = probabilities.get("SMiShing", 0.0)
p_other_scam = probabilities.get("Other Scam", 0.0)
p_legit = probabilities.get("Legitimate", 1.0)
p_smishing += smishing_boost
p_other_scam += other_scam_boost
p_legit -= (smishing_boost + other_scam_boost)
# Clamp to 0
p_smishing = max(p_smishing, 0.0)
p_other_scam = max(p_other_scam, 0.0)
p_legit = max(p_legit, 0.0)
# Re-normalize
total = p_smishing + p_other_scam + p_legit
if total > 0:
p_smishing /= total
p_other_scam /= total
p_legit /= total
else:
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0
return {
"SMiShing": p_smishing,
"Other Scam": p_other_scam,
"Legitimate": p_legit,
"detected_lang": detected_lang
}
def smishing_detector(input_type, text, image):
"""
Main detection function:
- If input_type == "Text": use `text` as the message
- If input_type == "Screenshot": use OCR on `image` to get text
"""
if input_type == "Text":
# Use the pasted text
combined_text = text.strip() if text else ""
else:
# input_type == "Screenshot"
if image is not None:
ocr_text = pytesseract.image_to_string(image, lang="spa+eng")
combined_text = ocr_text.strip()
else:
combined_text = ""
if not combined_text:
return {
"text_used_for_classification": "(none)",
"label": "No text provided",
"confidence": 0.0,
"keywords_found": [],
"urls_found": []
}
# Zero-shot classification
result = classifier(
sequences=combined_text,
candidate_labels=CANDIDATE_LABELS,
hypothesis_template="This message is {}."
)
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])}
# Boost logic
boosted = boost_probabilities(original_probs, combined_text)
# Convert to float
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))}
detected_lang = boosted.pop("detected_lang", "en")
# Final classification
final_label = max(boosted, key=boosted.get)
final_confidence = round(boosted[final_label], 3)
# For display
lower_text = combined_text.lower()
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text)
found_urls = re.findall(r"(https?://[^\s]+)", lower_text)
found_smishing = [kw for kw in smishing_keys if kw in lower_text]
found_other_scam = [kw for kw in scam_keys if kw in lower_text]
return {
"detected_language": detected_lang,
"text_used_for_classification": combined_text,
"original_probabilities": {k: round(v, 3) for k, v in original_probs.items()},
"boosted_probabilities": {k: round(v, 3) for k, v in boosted.items()},
"label": final_label,
"confidence": final_confidence,
"smishing_keywords_found": found_smishing,
"other_scam_keywords_found": found_other_scam,
"urls_found": found_urls,
}
# Create a Radio for user choice + text input + image input
demo = gr.Interface(
fn=smishing_detector,
inputs=[
gr.Radio(
choices=["Text", "Screenshot"],
label="Choose input type",
value="Text", # default
info="Select 'Text' to paste a message, or 'Screenshot' to upload an image."
),
gr.Textbox(
lines=3,
label="Paste Suspicious SMS Text",
placeholder="Type or paste the message here..."
),
gr.Image(
type="pil",
label="Upload a Screenshot",
)
],
outputs="json",
title="SMiShing & Scam Detector",
description="""
Select "Text" or "Screenshot" above.
- If "Text", only use the textbox.
- If "Screenshot", only upload an image.
The app will classify the message as SMiShing, Other Scam, or Legitimate.
""",
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch()