|
import gradio as gr |
|
import pytesseract |
|
from PIL import Image |
|
from transformers import pipeline |
|
import re |
|
from langdetect import detect |
|
from deep_translator import GoogleTranslator |
|
|
|
|
|
translator = GoogleTranslator(source="auto", target="es") |
|
|
|
|
|
with open("smishing_keywords.txt", "r", encoding="utf-8") as f: |
|
SMISHING_KEYWORDS = [line.strip().lower() for line in f if line.strip()] |
|
|
|
with open("other_scam_keywords.txt", "r", encoding="utf-8") as f: |
|
OTHER_SCAM_KEYWORDS = [line.strip().lower() for line in f if line.strip()] |
|
|
|
|
|
model_name = "joeddav/xlm-roberta-large-xnli" |
|
classifier = pipeline("zero-shot-classification", model=model_name) |
|
CANDIDATE_LABELS = ["SMiShing", "Other Scam", "Legitimate"] |
|
|
|
def get_keywords_by_language(text: str): |
|
""" |
|
Detect language using `langdetect` and translate keywords if needed. |
|
""" |
|
snippet = text[:200] |
|
try: |
|
detected_lang = detect(snippet) |
|
except Exception: |
|
detected_lang = "en" |
|
|
|
if detected_lang == "es": |
|
smishing_in_spanish = [ |
|
translator.translate(kw).lower() for kw in SMISHING_KEYWORDS |
|
] |
|
other_scam_in_spanish = [ |
|
translator.translate(kw).lower() for kw in OTHER_SCAM_KEYWORDS |
|
] |
|
return smishing_in_spanish, other_scam_in_spanish, "es" |
|
else: |
|
return SMISHING_KEYWORDS, OTHER_SCAM_KEYWORDS, "en" |
|
|
|
def boost_probabilities(probabilities: dict, text: str): |
|
""" |
|
Boost probabilities based on keyword matches and presence of URLs. |
|
""" |
|
lower_text = text.lower() |
|
smishing_keywords, other_scam_keywords, detected_lang = get_keywords_by_language(text) |
|
|
|
smishing_count = sum(1 for kw in smishing_keywords if kw in lower_text) |
|
other_scam_count = sum(1 for kw in other_scam_keywords if kw in lower_text) |
|
|
|
smishing_boost = 0.30 * smishing_count |
|
other_scam_boost = 0.30 * other_scam_count |
|
|
|
found_urls = re.findall(r"(https?://[^\s]+)", lower_text) |
|
if found_urls: |
|
smishing_boost += 0.35 |
|
|
|
p_smishing = probabilities.get("SMiShing", 0.0) |
|
p_other_scam = probabilities.get("Other Scam", 0.0) |
|
p_legit = probabilities.get("Legitimate", 1.0) |
|
|
|
p_smishing += smishing_boost |
|
p_other_scam += other_scam_boost |
|
p_legit -= (smishing_boost + other_scam_boost) |
|
|
|
p_smishing = max(p_smishing, 0.0) |
|
p_other_scam = max(p_other_scam, 0.0) |
|
p_legit = max(p_legit, 0.0) |
|
|
|
total = p_smishing + p_other_scam + p_legit |
|
if total > 0: |
|
p_smishing /= total |
|
p_other_scam /= total |
|
p_legit /= total |
|
else: |
|
p_smishing, p_other_scam, p_legit = 0.0, 0.0, 1.0 |
|
|
|
return { |
|
"SMiShing": p_smishing, |
|
"Other Scam": p_other_scam, |
|
"Legitimate": p_legit, |
|
"detected_lang": detected_lang |
|
} |
|
|
|
def smishing_detector(text, image): |
|
""" |
|
Main detection function combining text and OCR. |
|
""" |
|
combined_text = text or "" |
|
if image is not None: |
|
ocr_text = pytesseract.image_to_string(image, lang="spa+eng") |
|
combined_text += " " + ocr_text |
|
combined_text = combined_text.strip() |
|
|
|
if not combined_text: |
|
return { |
|
"text_used_for_classification": "(none)", |
|
"label": "No text provided", |
|
"confidence": 0.0, |
|
"keywords_found": [], |
|
"urls_found": [] |
|
} |
|
|
|
result = classifier( |
|
sequences=combined_text, |
|
candidate_labels=CANDIDATE_LABELS, |
|
hypothesis_template="This message is {}." |
|
) |
|
original_probs = {k: float(v) for k, v in zip(result["labels"], result["scores"])} |
|
boosted = boost_probabilities(original_probs, combined_text) |
|
|
|
boosted = {k: float(v) for k, v in boosted.items() if isinstance(v, (int, float))} |
|
detected_lang = boosted.pop("detected_lang", "en") |
|
final_label = max(boosted, key=boosted.get) |
|
final_confidence = round(boosted[final_label], 3) |
|
|
|
lower_text = combined_text.lower() |
|
smishing_keys, scam_keys, _ = get_keywords_by_language(combined_text) |
|
|
|
found_urls = re.findall(r"(https?://[^\s]+)", lower_text) |
|
found_smishing = [kw for kw in smishing_keys if kw in lower_text] |
|
found_other_scam = [kw for kw in scam_keys if kw in lower_text] |
|
|
|
return { |
|
"detected_language": detected_lang, |
|
"text_used_for_classification": combined_text, |
|
"original_probabilities": {k: round(v, 3) for k, v in original_probs.items()}, |
|
"boosted_probabilities": {k: round(v, 3) for k, v in boosted.items()}, |
|
"label": final_label, |
|
"confidence": final_confidence, |
|
"smishing_keywords_found": found_smishing, |
|
"other_scam_keywords_found": found_other_scam, |
|
"urls_found": found_urls, |
|
} |
|
|
|
demo = gr.Interface( |
|
fn=smishing_detector, |
|
inputs=[ |
|
gr.Textbox( |
|
lines=3, |
|
label="Paste Suspicious SMS Text (English/Spanish)", |
|
placeholder="Type or paste the message here..." |
|
), |
|
gr.Image( |
|
type="pil", |
|
label="Or Upload a Screenshot (Optional)" |
|
) |
|
], |
|
outputs="json", |
|
title="SMiShing & Scam Detector (Language Detection + Keyword Translation)", |
|
description=""" |
|
This tool classifies messages as SMiShing, Other Scam, or Legitimate using a zero-shot model |
|
(joeddav/xlm-roberta-large-xnli). It automatically detects if the text is Spanish or English. |
|
If Spanish, it translates the English-based keyword lists to Spanish before boosting the scores. |
|
Any URL found further boosts SMiShing specifically. |
|
""", |
|
allow_flagging="never" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |