import gradio as gr from transformers import pipeline import cv2 from PIL import Image import io import scipy import torch import time def video_to_descriptions(video, target_language="en"): start_time = time.time() print("START TIME = ", start_time) ImgToText = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") Summarize = pipeline("summarization", model="tuner007/pegasus_summarizer") translator = pipeline("translation", model=f"Helsinki-NLP/opus-mt-en-{target_language}") audio = pipeline("text-to-speech", model="suno/bark-small") voice_preset = f"v2/{target_language}_speaker_1" cap = cv2.VideoCapture(video) fps = int(cap.get(cv2.CAP_PROP_FPS)) descriptions = [] frame_count = 0 while True: ret, frame = cap.read() if not ret: break if frame_count % (fps * 2) == 0: frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) pil_img = Image.fromarray(frame_rgb) outputs = ImgToText(pil_img) description = outputs[0]['generated_text'] descriptions.append(description) print(str(frame_count) + " : " + outputs[0]['generated_text']) frame_count += 1 cap.release() concatenated_description = " ".join(descriptions) summarized_description = Summarize(concatenated_description, max_length=31)[0]["summary_text"] print("SUMMARIZATION : " + summarized_description) translated_text = translator(summarized_description)[0]["translation_text"] print("TRANSLATION : " + translated_text) audio_file = audio(translated_text) output_path = "./bark_out.wav" scipy.io.wavfile.write(output_path, data=audio_file["audio"][0], rate=audio_file["sampling_rate"]) stop_time = time.time() print("EXECUTION TIME = ", stop_time - start_time) return output_path language_dropdown = gr.Dropdown( ["en", "fr", "de", "es"], label="[MANDATORY] Language", info="The Voice's Language" ) iface = gr.Interface( fn=video_to_descriptions, inputs=[gr.Video(label="Video to Upload", info="The Video"), language_dropdown], outputs="audio", live=False ) if __name__ == "__main__": iface.launch()