Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
2 |
+
import soundfile as sf
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
# load model and processor
|
8 |
+
processor = Wav2Vec2Processor.from_pretrained("h4d35/Wav2Vec2-hi")
|
9 |
+
model = Wav2Vec2ForCTC.from_pretrained("h4d35/Wav2Vec2-hi")
|
10 |
+
|
11 |
+
# define function to read in sound file
|
12 |
+
def map_to_array(file):
|
13 |
+
speech, _ = sf.read(file)
|
14 |
+
return speech
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
# tokenize
|
19 |
+
def inference(audio):
|
20 |
+
input_values = processor(map_to_array(audio.name), return_tensors="pt", padding="longest").input_values # Batch size 1
|
21 |
+
|
22 |
+
# retrieve logits
|
23 |
+
logits = model(input_values).logits
|
24 |
+
|
25 |
+
# take argmax and decode
|
26 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
27 |
+
transcription = processor.batch_decode(predicted_ids)
|
28 |
+
return transcription[0]
|
29 |
+
|
30 |
+
inputs = gr.inputs.Audio(label="Input Audio", type="file")
|
31 |
+
outputs = gr.outputs.Textbox(label="Output Text")
|
32 |
+
|
33 |
+
title = "HindiASR"
|
34 |
+
description = "HindiASR using Wav2Vec2.0"
|
35 |
+
|
36 |
+
|
37 |
+
#examples=[['poem.wav']]
|
38 |
+
gr.Interface(inference, inputs, outputs, title=title, description=description).launch()
|