#Pinecone team has been making a lot of changes to there code and here is how it should be used going forward :) from pinecone import Pinecone as PineconeClient #from langchain.vectorstores import Pinecone #This import has been replaced by the below one :) from langchain_community.vectorstores import Pinecone #from langchain.llms import OpenAI #This import has been replaced by the below one :) from langchain_openai import OpenAI from langchain.chains.question_answering import load_qa_chain #from langchain.callbacks import get_openai_callback #This import has been replaced by the below one :) from langchain_community.callbacks import get_openai_callback from langchain_community.embeddings import SentenceTransformerEmbeddings import joblib #Function to pull index data from Pinecone... def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings): PineconeClient( api_key=pinecone_apikey, environment=pinecone_environment ) index_name = pinecone_index_name index = Pinecone.from_existing_index(index_name, embeddings) return index def create_embeddings(): embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") return embeddings #This function will help us in fetching the top relevent documents from our vector store - Pinecone Index def get_similar_docs(index,query,k=2): similar_docs = index.similarity_search(query, k=k) return similar_docs