gutai123 commited on
Commit
bdea572
·
verified ·
1 Parent(s): 08f1571

Update user_utils.py

Browse files
Files changed (1) hide show
  1. user_utils.py +9 -5
user_utils.py CHANGED
@@ -2,6 +2,7 @@
2
  from pinecone import Pinecone as PineconeClient
3
  #from langchain.vectorstores import Pinecone #This import has been replaced by the below one :)
4
  from langchain_community.vectorstores import Pinecone
 
5
 
6
  #from langchain.llms import OpenAI #This import has been replaced by the below one :)
7
  from langchain_openai import OpenAI
@@ -11,6 +12,7 @@ from langchain_community.callbacks import get_openai_callback
11
  from langchain_community.embeddings import SentenceTransformerEmbeddings
12
  import joblib
13
 
 
14
 
15
  #Function to pull index data from Pinecone...
16
  def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings):
@@ -35,9 +37,11 @@ def get_similar_docs(index,query,k=2):
35
  similar_docs = index.similarity_search(query, k=k)
36
  return similar_docs
37
 
38
- def get_answer(docs,user_input):
39
- chain = load_qa_chain(OpenAI(), chain_type="stuff")
40
- with get_openai_callback() as cb:
41
- response = chain.run(input_documents=docs, question=user_input)
42
- return response
43
 
 
 
 
 
 
2
  from pinecone import Pinecone as PineconeClient
3
  #from langchain.vectorstores import Pinecone #This import has been replaced by the below one :)
4
  from langchain_community.vectorstores import Pinecone
5
+ from transformers import pipeline
6
 
7
  #from langchain.llms import OpenAI #This import has been replaced by the below one :)
8
  from langchain_openai import OpenAI
 
12
  from langchain_community.embeddings import SentenceTransformerEmbeddings
13
  import joblib
14
 
15
+ qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
16
 
17
  #Function to pull index data from Pinecone...
18
  def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings):
 
37
  similar_docs = index.similarity_search(query, k=k)
38
  return similar_docs
39
 
40
+ def get_answer(docs, user_input):
41
+ # Concatenate all the documents into one large context
42
+ context = " ".join([doc['page_content'] for doc in docs])
 
 
43
 
44
+ # Use Hugging Face's QA model to get the answer
45
+ response = qa_pipeline(question=user_input, context=context)
46
+
47
+ return response['answer']