gutai123's picture
Update admin_utils.py
bac31f6 verified
raw
history blame
2.93 kB
from pypdf import PdfReader
from langchain_huggingface import HuggingFaceEndpoint
from langchain.text_splitter import RecursiveCharacterTextSplitter
#from langchain.embeddings import OpenAIEmbeddings #This import has been replaced by the below one :)
from langchain_community.embeddings import OpenAIEmbeddings
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
#from langchain.llms import OpenAI #This import has been replaced by the below one :)
from langchain_openai import OpenAI
#Pinecone team has been making a lot of changes to there code and here is how it should be used going forward :)
from pinecone import Pinecone as PineconeClient
#from langchain.vectorstores import Pinecone #This import has been replaced by the below one :)
from langchain_community.vectorstores import Pinecone
import pandas as pd
from sklearn.model_selection import train_test_split
#**********Functions to help you load documents to PINECONE************
#Read PDF data
def read_pdf_data(pdf_file):
pdf_page = PdfReader(pdf_file)
text = ""
for page in pdf_page.pages:
text += page.extract_text()
return text
#Split data into chunks
def split_data(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
docs = text_splitter.split_text(text)
docs_chunks =text_splitter.create_documents(docs)
return docs_chunks
#Create embeddings instance
def create_embeddings_load_data():
#embeddings = OpenAIEmbeddings()
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
return embeddings
#Function to push data to Pinecone
def push_to_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings,docs):
PineconeClient(
api_key=pinecone_apikey,
environment=pinecone_environment
)
index_name = pinecone_index_name
index = Pinecone.from_documents(docs, embeddings, index_name=index_name)
return index
def read_data(data):
df = pd.read_csv(data,delimiter=',', header=None)
return df
#Create embeddings instance
def get_embeddings():
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
return embeddings
#Generating embeddings for our input dataset
def create_embeddings(df,embeddings):
df[2] = df[0].apply(lambda x: embeddings.embed_query(x))
return df
#Splitting the data into train & test
def split_train_test__data(df_sample):
# Split into training and testing sets
sentences_train, sentences_test, labels_train, labels_test = train_test_split(
list(df_sample[2]), list(df_sample[1]), test_size=0.25, random_state=0)
print(len(sentences_train))
return sentences_train, sentences_test, labels_train, labels_test
#Get the accuracy score on test data
def get_score(svm_classifier,sentences_test,labels_test):
score = svm_classifier.score(sentences_test, labels_test)
return score