import streamlit as st | |
from dotenv import load_dotenv | |
from transformers import pipeline | |
from user_utils import * | |
# Load environment variables | |
# Initialize the question-answering pipeline with a pre-trained model | |
def main(): | |
load_dotenv() | |
st.header("Automatic Ticket Classification Tool") | |
#Capture user input | |
st.write("We are here to help you, please ask your question:") | |
user_input = st.text_input("π") | |
if user_input: | |
#creating embeddings instance... | |
embeddings=create_embeddings() | |
#Function to pull index data from Pinecone | |
import os | |
#We are fetching the previously stored Pinecome environment variable key in "Load_Data_Store.py" file | |
index=pull_from_pinecone("pcsk_4etRhj_Lc37c2KWzUgdTSPaShQKgxeZvC331qJcVWjK9LfpDARwkG23kXZoN5ZCHVLyYWZ","us-east-1","ticket",embeddings) | |
#This function will help us in fetching the top relevent documents from our vector store - Pinecone Index | |
relavant_docs=get_similar_docs(index,user_input) | |
#This will return the fine tuned response by LLM | |
response=get_answer(relavant_docs,user_input) | |
st.write(response) | |
button=st.button("submit ticket?") | |
if button: | |
st.write("raise ticket") | |
# Ensure proper script execution entry point | |
if __name__ == "__main__": | |
main() | |