|
from pypdf import PdfReader |
|
from langchain_huggingface import HuggingFaceEndpoint |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
|
from langchain_community.embeddings import OpenAIEmbeddings |
|
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings |
|
|
|
from langchain_openai import OpenAI |
|
|
|
from pinecone import Pinecone as PineconeClient |
|
|
|
from langchain_community.vectorstores import Pinecone |
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_pdf_data(pdf_file): |
|
pdf_page = PdfReader(pdf_file) |
|
text = "" |
|
for page in pdf_page.pages: |
|
text += page.extract_text() |
|
return text |
|
|
|
|
|
def split_data(text): |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50) |
|
docs = text_splitter.split_text(text) |
|
docs_chunks =text_splitter.create_documents(docs) |
|
return docs_chunks |
|
|
|
|
|
def create_embeddings_load_data(): |
|
|
|
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") |
|
return embeddings |
|
|
|
|
|
def push_to_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings,docs): |
|
|
|
PineconeClient( |
|
api_key=pinecone_apikey, |
|
environment=pinecone_environment |
|
) |
|
|
|
index_name = pinecone_index_name |
|
index = Pinecone.from_documents(docs, embeddings, index_name=index_name) |
|
return index |
|
|
|
def read_data(data): |
|
df = pd.read_csv(data,delimiter=',', header=None) |
|
return df |
|
|
|
|
|
def get_embeddings(): |
|
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") |
|
return embeddings |
|
|
|
|
|
def create_embeddings(df,embeddings): |
|
df[2] = df[0].apply(lambda x: embeddings.embed_query(x)) |
|
return df |
|
|
|
|
|
def split_train_test__data(df_sample): |
|
|
|
sentences_train, sentences_test, labels_train, labels_test = train_test_split( |
|
list(df_sample[2]), list(df_sample[1]), test_size=0.25, random_state=0) |
|
print(len(sentences_train)) |
|
return sentences_train, sentences_test, labels_train, labels_test |
|
|
|
|
|
def get_score(svm_classifier,sentences_test,labels_test): |
|
score = svm_classifier.score(sentences_test, labels_test) |
|
return score |
|
|