Spaces:
Paused
Paused
Update finetune.py
Browse files- finetune.py +163 -162
finetune.py
CHANGED
@@ -15,176 +15,177 @@ from peft import (
|
|
15 |
get_peft_model_state_dict,
|
16 |
)
|
17 |
|
18 |
-
HF_TOKEN = os.environ.get("TRL_TOKEN", None)
|
19 |
-
if HF_TOKEN:
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
# Parameters
|
26 |
-
|
27 |
-
MICRO_BATCH_SIZE = 16
|
28 |
-
BATCH_SIZE = 32
|
29 |
-
size = "7b"
|
30 |
-
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
|
31 |
-
EPOCHS = 1
|
32 |
-
LEARNING_RATE = float(0.00015)
|
33 |
-
CUTOFF_LEN = 512
|
34 |
-
LORA_R = 8
|
35 |
-
LORA_ALPHA = 16
|
36 |
-
LORA_DROPOUT = 0.05
|
37 |
-
VAL_SET_SIZE = 2000
|
38 |
-
TARGET_MODULES = [
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
]
|
46 |
-
DATA_PATH = "data/data_tmp.json"
|
47 |
-
OUTPUT_DIR = "checkpoints/{}".format(size)
|
48 |
-
|
49 |
-
if not os.path.exists("data"):
|
50 |
-
|
51 |
-
# Load data
|
52 |
-
data = []
|
53 |
-
for x in "alpaca,stackoverflow,quora".split(","):
|
54 |
-
|
55 |
-
random.shuffle(data)
|
56 |
-
json.dump(data, open(DATA_PATH, "w"))
|
57 |
-
data = load_dataset("json", data_files=DATA_PATH)
|
58 |
-
|
59 |
-
# Load Model
|
60 |
-
device_map = "auto"
|
61 |
-
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
62 |
-
ddp = world_size != 1
|
63 |
-
if ddp:
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
model = LlamaForCausalLM.from_pretrained(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
)
|
72 |
-
total_params, params = 0, 0
|
73 |
-
|
74 |
-
tokenizer = LlamaTokenizer.from_pretrained(
|
75 |
-
|
76 |
-
|
77 |
-
)
|
78 |
-
|
79 |
-
model = prepare_model_for_int8_training(model)
|
80 |
-
|
81 |
-
config = LoraConfig(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
)
|
89 |
-
config.save_pretrained(OUTPUT_DIR)
|
90 |
-
|
91 |
-
model = get_peft_model(model, config)
|
92 |
-
tokenizer.pad_token_id = 0
|
93 |
-
|
94 |
-
for n, p in model.model.named_parameters():
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
print(
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
)
|
104 |
-
|
105 |
-
|
106 |
-
# Data Preprocess
|
107 |
-
def generate_prompt(data_point):
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
def tokenize(prompt):
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
def generate_and_tokenize_prompt(data_point):
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
if VAL_SET_SIZE > 0:
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
else:
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
# Training
|
141 |
-
trainer = transformers.Trainer(
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
)
|
165 |
-
model.config.use_cache = False
|
166 |
-
|
167 |
-
old_state_dict = model.state_dict
|
168 |
-
model.state_dict = (
|
169 |
-
|
170 |
-
).__get__(model, type(model))
|
171 |
|
172 |
import gradio as gr
|
173 |
|
174 |
def train():
|
175 |
-
print(
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
181 |
|
182 |
iface = gr.Interface(
|
183 |
fn=train,
|
184 |
-
inputs=
|
185 |
-
outputs=
|
186 |
title="Training Interface",
|
187 |
-
description="
|
188 |
theme="default",
|
189 |
layout="vertical",
|
190 |
allow_flagging=False,
|
|
|
15 |
get_peft_model_state_dict,
|
16 |
)
|
17 |
|
18 |
+
# HF_TOKEN = os.environ.get("TRL_TOKEN", None)
|
19 |
+
# if HF_TOKEN:
|
20 |
+
# print(HF_TOKEN)
|
21 |
+
# repo = Repository(
|
22 |
+
# local_dir="./checkpoints/", clone_from="gustavoaq/llama_ft", use_auth_token=HF_TOKEN, repo_type="models"
|
23 |
+
# )
|
24 |
+
# repo.git_pull()
|
25 |
+
# # Parameters
|
26 |
+
|
27 |
+
# MICRO_BATCH_SIZE = 16
|
28 |
+
# BATCH_SIZE = 32
|
29 |
+
# size = "7b"
|
30 |
+
# GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
|
31 |
+
# EPOCHS = 1
|
32 |
+
# LEARNING_RATE = float(0.00015)
|
33 |
+
# CUTOFF_LEN = 512
|
34 |
+
# LORA_R = 8
|
35 |
+
# LORA_ALPHA = 16
|
36 |
+
# LORA_DROPOUT = 0.05
|
37 |
+
# VAL_SET_SIZE = 2000
|
38 |
+
# TARGET_MODULES = [
|
39 |
+
# "q_proj",
|
40 |
+
# "k_proj",
|
41 |
+
# "v_proj",
|
42 |
+
# "down_proj",
|
43 |
+
# "gate_proj",
|
44 |
+
# "up_proj",
|
45 |
+
# ]
|
46 |
+
# DATA_PATH = "data/data_tmp.json"
|
47 |
+
# OUTPUT_DIR = "checkpoints/{}".format(size)
|
48 |
+
|
49 |
+
# if not os.path.exists("data"):
|
50 |
+
# os.makedirs("data")
|
51 |
+
# # Load data
|
52 |
+
# data = []
|
53 |
+
# for x in "alpaca,stackoverflow,quora".split(","):
|
54 |
+
# data += json.load(open("data/{}_chat_data.json".format(x)))
|
55 |
+
# random.shuffle(data)
|
56 |
+
# json.dump(data, open(DATA_PATH, "w"))
|
57 |
+
# data = load_dataset("json", data_files=DATA_PATH)
|
58 |
+
|
59 |
+
# # Load Model
|
60 |
+
# device_map = "auto"
|
61 |
+
# world_size = int(os.environ.get("WORLD_SIZE", 1))
|
62 |
+
# ddp = world_size != 1
|
63 |
+
# if ddp:
|
64 |
+
# device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
|
65 |
+
# GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size
|
66 |
+
|
67 |
+
# model = LlamaForCausalLM.from_pretrained(
|
68 |
+
# "decapoda-research/llama-{}-hf".format(size),
|
69 |
+
# load_in_8bit=True,
|
70 |
+
# device_map='auto',
|
71 |
+
# )
|
72 |
+
# total_params, params = 0, 0
|
73 |
+
|
74 |
+
# tokenizer = LlamaTokenizer.from_pretrained(
|
75 |
+
# "decapoda-research/llama-{}-hf".format(size), add_eos_token=True,
|
76 |
+
# load_in_8bit_fp32_cpu_offload=True, device_map={0: [0]},
|
77 |
+
# )
|
78 |
+
|
79 |
+
# model = prepare_model_for_int8_training(model)
|
80 |
+
|
81 |
+
# config = LoraConfig(
|
82 |
+
# r=LORA_R,
|
83 |
+
# lora_alpha=LORA_ALPHA,
|
84 |
+
# target_modules=TARGET_MODULES,
|
85 |
+
# lora_dropout=LORA_DROPOUT,
|
86 |
+
# bias="none",
|
87 |
+
# task_type="CAUSAL_LM",
|
88 |
+
# )
|
89 |
+
# config.save_pretrained(OUTPUT_DIR)
|
90 |
+
|
91 |
+
# model = get_peft_model(model, config)
|
92 |
+
# tokenizer.pad_token_id = 0
|
93 |
+
|
94 |
+
# for n, p in model.model.named_parameters():
|
95 |
+
# if any([x in n for x in ["lora"]]):
|
96 |
+
# total_params += p.numel()
|
97 |
+
# params += p.numel()
|
98 |
+
|
99 |
+
# print(
|
100 |
+
# "Total number of parameters: {}M, rate: {}%".format(
|
101 |
+
# total_params // 1000 / 1000, round(total_params / params * 100, 2)
|
102 |
+
# )
|
103 |
+
# )
|
104 |
+
|
105 |
+
|
106 |
+
# # Data Preprocess
|
107 |
+
# def generate_prompt(data_point):
|
108 |
+
# return data_point["input"]
|
109 |
+
|
110 |
+
|
111 |
+
# def tokenize(prompt):
|
112 |
+
# result = tokenizer(
|
113 |
+
# prompt,
|
114 |
+
# truncation=True,
|
115 |
+
# max_length=CUTOFF_LEN + 1,
|
116 |
+
# padding="max_length",
|
117 |
+
# )
|
118 |
+
# return {
|
119 |
+
# "input_ids": result["input_ids"][:-1],
|
120 |
+
# "attention_mask": result["attention_mask"][:-1],
|
121 |
+
# }
|
122 |
+
|
123 |
+
|
124 |
+
# def generate_and_tokenize_prompt(data_point):
|
125 |
+
# prompt = generate_prompt(data_point)
|
126 |
+
# return tokenize(prompt)
|
127 |
+
|
128 |
+
|
129 |
+
# if VAL_SET_SIZE > 0:
|
130 |
+
# train_val = data["train"].train_test_split(
|
131 |
+
# test_size=VAL_SET_SIZE, shuffle=True, seed=42
|
132 |
+
# )
|
133 |
+
# train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt)
|
134 |
+
# val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt)
|
135 |
+
# else:
|
136 |
+
# train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
|
137 |
+
# val_data = None
|
138 |
+
|
139 |
+
|
140 |
+
# # Training
|
141 |
+
# trainer = transformers.Trainer(
|
142 |
+
# model=model,
|
143 |
+
# train_dataset=train_data,
|
144 |
+
# eval_dataset=val_data,
|
145 |
+
# args=transformers.TrainingArguments(
|
146 |
+
# per_device_train_batch_size=MICRO_BATCH_SIZE,
|
147 |
+
# per_device_eval_batch_size=MICRO_BATCH_SIZE,
|
148 |
+
# gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
|
149 |
+
# warmup_steps=100,
|
150 |
+
# num_train_epochs=EPOCHS,
|
151 |
+
# learning_rate=LEARNING_RATE,
|
152 |
+
# fp16=True,
|
153 |
+
# logging_steps=20,
|
154 |
+
# evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no",
|
155 |
+
# save_strategy="steps",
|
156 |
+
# eval_steps=200 if VAL_SET_SIZE > 0 else None,
|
157 |
+
# save_steps=200,
|
158 |
+
# output_dir=OUTPUT_DIR,
|
159 |
+
# save_total_limit=100,
|
160 |
+
# load_best_model_at_end=True if VAL_SET_SIZE > 0 else False,
|
161 |
+
# ddp_find_unused_parameters=False if ddp else None,
|
162 |
+
# ),
|
163 |
+
# data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
|
164 |
+
# )
|
165 |
+
# model.config.use_cache = False
|
166 |
+
|
167 |
+
# old_state_dict = model.state_dict
|
168 |
+
# model.state_dict = (
|
169 |
+
# lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
|
170 |
+
# ).__get__(model, type(model))
|
171 |
|
172 |
import gradio as gr
|
173 |
|
174 |
def train():
|
175 |
+
print("Event Dispared")
|
176 |
+
# print(os.listdir(OUTPUT_DIR))
|
177 |
+
# # Call your trainer's train() function here
|
178 |
+
# trainer.train()
|
179 |
+
# print("Training complete.") # optional message to display when training is done
|
180 |
+
# model.save_pretrained(OUTPUT_DIR)
|
181 |
+
# repo.push_to_hub(OUTPUT_DIR, commit_message="Ft model")
|
182 |
|
183 |
iface = gr.Interface(
|
184 |
fn=train,
|
185 |
+
inputs=gr.inputs.Textbox(label="Input text"),
|
186 |
+
outputs=gr.outputs.Textbox(label="Output length"),
|
187 |
title="Training Interface",
|
188 |
+
description="Enter some text and click the button to start training.",
|
189 |
theme="default",
|
190 |
layout="vertical",
|
191 |
allow_flagging=False,
|