File size: 10,423 Bytes
1f77b91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from __future__ import division
import time
import torch 
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2 
from utils import *
import argparse
import os 
import os.path as osp
from darknet import Darknet
# from preprocess import prep_image, inp_to_image
import pandas as pd
import random 
import pickle as pkl
import itertools

class test_net(nn.Module):
    def __init__(self, num_layers, input_size):
        super(test_net, self).__init__()
        self.num_layers= num_layers
        self.linear_1 = nn.Linear(input_size, 5)
        self.middle = nn.ModuleList([nn.Linear(5,5) for x in range(num_layers)])
        self.output = nn.Linear(5,2)
    
    def forward(self, x):
        x = x.view(-1)
        fwd = nn.Sequential(self.linear_1, *self.middle, self.output)
        return fwd(x)
        
def get_test_input(input_dim, CUDA):
    img = cv2.imread("dog-cycle-car.png")
    img = cv2.resize(img, (input_dim, input_dim)) 
    img_ =  img[:,:,::-1].transpose((2,0,1))
    img_ = img_[np.newaxis,:,:,:]/255.0
    img_ = torch.from_numpy(img_).float()
    img_ = Variable(img_)
    
    if CUDA:
        img_ = img_.cuda()
    num_classes
    return img_



def arg_parse():
    """
    Parse arguements to the detect module
    
    """
    
    
    parser = argparse.ArgumentParser(description='YOLO v3 Detection Module')
   
    parser.add_argument("--images", dest = 'images', help = 
                        "Image / Directory containing images to perform detection upon",
                        default = "imgs", type = str)
    parser.add_argument("--det", dest = 'det', help = 
                        "Image / Directory to store detections to",
                        default = "det", type = str)
    parser.add_argument("--bs", dest = "bs", help = "Batch size", default = 1)
    parser.add_argument("--confidence", dest = "confidence", help = "Object Confidence to filter predictions", default = 0.5)
    parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshhold", default = 0.4)
    parser.add_argument("--cfg", dest = 'cfgfile', help = 
                        "Config file",
                        default = "cfg/yolov3.cfg", type = str)
    parser.add_argument("--weights", dest = 'weightsfile', help = 
                        "weightsfile",
                        default = "yolov3.weights", type = str)
    parser.add_argument("--reso", dest = 'reso', help = 
                        "Input resolution of the network. Increase to increase accuracy. Decrease to increase speed",
                        default = "416", type = str)
    parser.add_argument("--scales", dest = "scales", help = "Scales to use for detection",
                        default = "1,2,3", type = str)
    
    return parser.parse_args()

if __name__ ==  '__main__':
    args = arg_parse()
    
    scales = args.scales
    
    
#        scales = [int(x) for x in scales.split(',')]
#        
#        
#        
#        args.reso = int(args.reso)
#        
#        num_boxes = [args.reso//32, args.reso//16, args.reso//8]    
#        scale_indices = [3*(x**2) for x in num_boxes]
#        scale_indices = list(itertools.accumulate(scale_indices, lambda x,y : x+y))
#    
#        
#        li = []
#        i = 0
#        for scale in scale_indices:        
#            li.extend(list(range(i, scale))) 
#            i = scale
#        
#        scale_indices = li

    images = args.images
    batch_size = int(args.bs)
    confidence = float(args.confidence)
    nms_thesh = float(args.nms_thresh)
    start = 0

    CUDA = torch.cuda.is_available()

    num_classes = 80
    classes = load_classes('data/coco.names') 

    #Set up the neural network
    print("Loading network.....")
    model = Darknet(args.cfgfile)
    model.load_weights(args.weightsfile)
    print("Network successfully loaded")
    
    model.net_info["height"] = args.reso
    inp_dim = int(model.net_info["height"])
    assert inp_dim % 32 == 0 
    assert inp_dim > 32

    #If there's a GPU availible, put the model on GPU
    if CUDA:
        model.cuda()
    
    
    #Set the model in evaluation mode
    model.eval()
    
    read_dir = time.time()
    #Detection phase
    try:
        imlist = [osp.join(osp.realpath('.'), images, img) for img in os.listdir(images) if os.path.splitext(img)[1] == '.png' or os.path.splitext(img)[1] =='.jpeg' or os.path.splitext(img)[1] =='.jpg']
    except NotADirectoryError:
        imlist = []
        imlist.append(osp.join(osp.realpath('.'), images))
    except FileNotFoundError:
        print ("No file or directory with the name {}".format(images))
        exit()
        
    if not os.path.exists(args.det):
        os.makedirs(args.det)
        
    load_batch = time.time()
    
    batches = list(map(prep_image, imlist, [inp_dim for x in range(len(imlist))]))
    im_batches = [x[0] for x in batches]
    orig_ims = [x[1] for x in batches]
    im_dim_list = [x[2] for x in batches]
    im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)
    
    
    
    if CUDA:
        im_dim_list = im_dim_list.cuda()
    
    leftover = 0
    
    if (len(im_dim_list) % batch_size):
        leftover = 1
        
        
    if batch_size != 1:
        num_batches = len(imlist) // batch_size + leftover            
        im_batches = [torch.cat((im_batches[i*batch_size : min((i +  1)*batch_size,
                            len(im_batches))]))  for i in range(num_batches)]        


    i = 0
    

    write = False
    model(get_test_input(inp_dim, CUDA), CUDA)
    
    start_det_loop = time.time()
    
    objs = {}
    
    
    
    for batch in im_batches:
        #load the image 
        start = time.time()
        if CUDA:
            batch = batch.cuda()
        

        #Apply offsets to the result predictions
        #Tranform the predictions as described in the YOLO paper
        #flatten the prediction vector 
        # B x (bbox cord x no. of anchors) x grid_w x grid_h --> B x bbox x (all the boxes) 
        # Put every proposed box as a row.
        with torch.no_grad():
            prediction = model(Variable(batch), CUDA)
        
#        prediction = prediction[:,scale_indices]

        
        #get the boxes with object confidence > threshold
        #Convert the cordinates to absolute coordinates
        #perform NMS on these boxes, and save the results 
        #I could have done NMS and saving seperately to have a better abstraction
        #But both these operations require looping, hence 
        #clubbing these ops in one loop instead of two. 
        #loops are slower than vectorised operations. 
        
        prediction = write_results(prediction, confidence, num_classes, nms = True, nms_conf = nms_thesh)
        
        
        if type(prediction) == int:
            i += 1
            continue

        end = time.time()
        
#        print(end - start)

        prediction[:,0] += i*batch_size
        
        if not write:
            output = prediction
            write = 1
        else:
            output = torch.cat((output,prediction))
            
        
        

        for im_num, image in enumerate(imlist[i*batch_size: min((i +  1)*batch_size, len(imlist))]):
            im_id = i*batch_size + im_num
            objs = [classes[int(x[-1])] for x in output if int(x[0]) == im_id]
            print("{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start)/batch_size))
            print("{0:20s} {1:s}".format("Objects Detected:", " ".join(objs)))
            print("----------------------------------------------------------")
        i += 1

        
        if CUDA:
            torch.cuda.synchronize()
    
    try:
        output
    except NameError:
        print("No detections were made")
        exit()
        
    im_dim_list = torch.index_select(im_dim_list, 0, output[:,0].long())
    
    scaling_factor = torch.min(inp_dim/im_dim_list,1)[0].view(-1,1)
    
    
    output[:,[1,3]] -= (inp_dim - scaling_factor*im_dim_list[:,0].view(-1,1))/2
    output[:,[2,4]] -= (inp_dim - scaling_factor*im_dim_list[:,1].view(-1,1))/2
    
    
    
    output[:,1:5] /= scaling_factor
    
    for i in range(output.shape[0]):
        output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim_list[i,0])
        output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim_list[i,1])
        
        
    output_recast = time.time()
    
    class_load = time.time()

    colors = pkl.load(open("pallete", "rb"))
    
    draw = time.time()

    def write(x, batches, results):
        c1 = tuple(x[1:3].int())
        c2 = tuple(x[3:5].int())
        img = results[int(x[0])]

        print( 'img' , int( x[0] ) )
        print( 'cls' , int( x[-1] ) )

        cls = int(x[-1])
        label = "{0}".format(classes[cls])
        color = random.choice(colors)
        cv2.rectangle(img, c1, c2,color, 1)
        t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0]
        c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
        cv2.rectangle(img, c1, c2,color, -1)
        cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1)
        return img
    
            
    list(map(lambda x: write(x, im_batches, orig_ims), output))
      
    det_names = pd.Series(imlist).apply(lambda x: "{}/det_{}".format(args.det,x.split("/")[-1]))

    print('det_names ',det_names)
    print('orig_ims ',orig_ims[0].shape)
    print('output : ',output)
    
    list(map(cv2.imwrite, det_names, orig_ims))
    
    end = time.time()
    
    print()
    print("SUMMARY")
    print("----------------------------------------------------------")
    print("{:25s}: {}".format("Task", "Time Taken (in seconds)"))
    print()
    print("{:25s}: {:2.3f}".format("Reading addresses", load_batch - read_dir))
    print("{:25s}: {:2.3f}".format("Loading batch", start_det_loop - load_batch))
    print("{:25s}: {:2.3f}".format("Detection (" + str(len(imlist)) +  " images)", output_recast - start_det_loop))
    print("{:25s}: {:2.3f}".format("Output Processing", class_load - output_recast))
    print("{:25s}: {:2.3f}".format("Drawing Boxes", end - draw))
    print("{:25s}: {:2.3f}".format("Average time_per_img", (end - load_batch)/len(imlist)))
    print("----------------------------------------------------------")

    
    torch.cuda.empty_cache()