File size: 4,882 Bytes
1f77b91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from __future__ import division
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2
from utils import *
import argparse
import os
import os.path as osp
from darknet import Darknet
# from preprocess import prep_image, inp_to_image
import pandas as pd
import random
import pickle as pkl
import itertools
import os

if __name__ == '__main__':

    images = os.path.join('victoria.jpg')

    batch_size = int(1)
    confidence = float(0.5)
    nms_thesh = float(0.4)
    reso = 416
    start = 0

    CUDA = torch.cuda.is_available()

    num_classes = 80
    classes = load_classes('data/coco.names')

    #Set up the neural network

    model = Darknet("yolov3.cfg")
    model.load_weights("yolov3.weights")
    print(' [*] Model Loaded Successfuly')

    # set model resolution

    model.net_info["height"] = reso
    inp_dim = int(model.net_info["height"])

    assert inp_dim % 32 == 0
    assert inp_dim > 32

    # If there's a GPU availible, put the model on GPU
    if CUDA:
        model.cuda()

    # Set the model in evaluation mode
    model.eval()

    imlist = []
    imlist.append( osp.join(osp.realpath('.') , images) )

    batches = list( map( prep_image , imlist , [ inp_dim for x in range( len(imlist) ) ] ) )
    im_batches = [x[0] for x in batches]
    orig_ims = [x[1] for x in batches]
    im_dim_list = [x[2] for x in batches]

    print( 'im_dim_list : ' , im_dim_list )

    im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)

    print( 'im_dim_list : after' , im_dim_list )

    if CUDA:
        im_dim_list = im_dim_list.cuda()

    print('im_batches' , len(im_batches))

    batch = im_batches[0]

    if CUDA:
        batch = batch.cuda()


    #Apply offsets to the result predictions
    #Tranform the predictions as described in the YOLO paper
    #flatten the prediction vector
    # B x (bbox cord x no. of anchors) x grid_w x grid_h --> B x bbox x (all the boxes)
    # Put every proposed box as a row.
    with torch.no_grad():
        prediction = model(Variable(batch), CUDA)

#        prediction = prediction[:,scale_indices]


    #get the boxes with object confidence > threshold
    #Convert the cordinates to absolute coordinates
    #perform NMS on these boxes, and save the results
    #I could have done NMS and saving seperately to have a better abstraction
    #But both these operations require looping, hence
    #clubbing these ops in one loop instead of two.
    #loops are slower than vectorised operations.

    prediction = write_results(prediction, confidence, num_classes, nms = True, nms_conf = nms_thesh)


    # if type(prediction) == int:
    #     continue

    end = time.time()

    # print(end - start)

    # prediction[:,0] += i*batch_size

    output = prediction

    # 1, 1, 1
    # print( 'enumerate : ' , batch_size ,  len(imlist) , min( batch_size , len(imlist) ) )

    for im_num, image in enumerate( imlist ):
        im_id = im_num
        objs = [classes[int(x[-1])] for x in output if int(x[0]) == im_id]
        print("{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start)/batch_size))
        print("{0:20s} {1:s}".format("Objects Detected:", " ".join(objs)))
        print("----------------------------------------------------------")

    im_dim_list = torch.index_select(im_dim_list, 0, output[:,0].long())

    scaling_factor = torch.min(inp_dim/im_dim_list,1)[0].view(-1,1)

    output[:,[1,3]] -= (inp_dim - scaling_factor*im_dim_list[:,0].view(-1,1))/2
    output[:,[2,4]] -= (inp_dim - scaling_factor*im_dim_list[:,1].view(-1,1))/2

    output[:,1:5] /= scaling_factor

    for i in range(output.shape[0]):
        output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim_list[i,0])
        output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim_list[i,1])

    colors = pkl.load(open("pallete", "rb"))

    def write(x, batches, results):
        c1 = tuple(x[1:3].int())
        c2 = tuple(x[3:5].int())
        img = results[int(x[0])]

        print( 'img' , int( x[0] ) )
        print( 'cls' , int( x[-1] ) )

        cls = int(x[-1])
        label = "{0}".format(classes[cls])
        color = random.choice(colors)
        cv2.rectangle(img, c1, c2,color, 1)
        t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0]
        c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
        cv2.rectangle(img, c1, c2,color, -1)
        cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1)
        return img


    list(map(lambda x: write(x, im_batches, orig_ims), output))

    det_names = pd.Series(imlist).apply(lambda x: "{}/det_{}".format('det',x.split("/")[-1]))

    print('det_names ',det_names)
    print('orig_ims ',orig_ims[0].shape)
    print('output : ',output)

    list(map(cv2.imwrite, det_names, orig_ims))