File size: 5,976 Bytes
1f77b91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from __future__ import division
import time
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import cv2
from yolo.utils import *
import argparse
import os
import os.path as osp
from yolo.darknet import Darknet
# from preprocess import prep_image, inp_to_image
import pandas as pd
import random
import pickle as pkl
import itertools
import os
import base64
from PIL import Image
from io import BytesIO

class yolo_model():

    
    batch_size = int(1)
    confidence = float(0.5)
    nms_thesh = float(0.4)
    reso = 416
    start = 0

    CUDA = torch.cuda.is_available()

    num_classes = 80
    

    def __init__(self):

        self.classes = load_classes( os.path.join( 'yolo' , 'data', 'coco.names' ) )

        # self.colors = pkl.load( get_data_s3( "pallete" ) )

        # Set up the neural network

        self.model = Darknet( os.path.join( 'yolo' , 'yolov3-tiny.cfg' ) )
        self.model.load_weights( os.path.join(  'yolo' , 'yolov3-tiny.weights' ) )
        print(' [*] Model Loaded Successfuly')

        # set model resolution

        self.model.net_info["height"] = self.reso
        self.inp_dim = int(self.model.net_info["height"])
        
        assert self.inp_dim % 32 == 0
        assert self.inp_dim > 32

        # If there's a GPU availible, put the model on GPU
        if self.CUDA:
            self.model.cuda()

        # Set the model in evaluation mode
        self.model.eval()

    def write( self , x , batches , results , colors=[] ):
        c1 = tuple(x[1:3].int())
        c2 = tuple(x[3:5].int())
        img = results[int(x[0])]

        print( 'img' , int( x[0] ) )
        print( 'cls' , int( x[-1] ) )

        cls = int(x[-1])
        label = "{0}".format(self.classes[cls])
        color = random.choice(colors)
        cv2.rectangle(img, c1, c2,color, 1)
        t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0]
        c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
        cv2.rectangle(img, c1, c2,color, -1)
        cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1)
        return img

    def img_to_base64_str(self,img):
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        buffered.seek(0)
        img_byte = buffered.getvalue()
        img_str = "data:image/png;base64," + base64.b64encode(img_byte).decode()
        return img_str


    def predict( self , image ):

        imlist = []
        imlist.append( image )

        batches = list( map( prep_image_org , imlist , [ self.inp_dim for x in range( len(imlist) ) ] ) )
        im_batches = [x[0] for x in batches]
        orig_ims = [x[1] for x in batches]
        im_dim_list = [x[2] for x in batches]

        print( 'im_dim_list : ' , im_dim_list )

        im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)

        if self.CUDA:
            im_dim_list = im_dim_list.cuda()

        print('im_batches' , len(im_batches))

        batch = im_batches[0]

        if self.CUDA:
            batch = batch.cuda()


        #Apply offsets to the result predictions
        #Tranform the predictions as described in the YOLO paper
        #flatten the prediction vector
        # B x (bbox cord x no. of anchors) x grid_w x grid_h --> B x bbox x (all the boxes)
        # Put every proposed box as a row.
        with torch.no_grad():
            prediction = self.model(Variable(batch), self.CUDA)

    #        prediction = prediction[:,scale_indices]


        #get the boxes with object confidence > threshold
        #Convert the cordinates to absolute coordinates
        #perform NMS on these boxes, and save the results
        #I could have done NMS and saving seperately to have a better abstraction
        #But both these operations require looping, hence
        #clubbing these ops in one loop instead of two.
        #loops are slower than vectorised operations.

        prediction = write_results(prediction, self.confidence, self.num_classes, nms = True, nms_conf = self.nms_thesh)

        end = time.time()

        # print(end - start)

        # prediction[:,0] += i*batch_size

        output = prediction

        # 1, 1, 1
        # print( 'enumerate : ' , batch_size ,  len(imlist) , min( batch_size , len(imlist) ) )

        for im_num, image in enumerate( imlist ):
            im_id = im_num
            objs = [self.classes[int(x[-1])] for x in output if int(x[0]) == im_id]
            # print("{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - self.start)/self.batch_size))
            print("{0:20s} {1:s}".format("Objects Detected:", " ".join(objs)))
            print("----------------------------------------------------------")

        im_dim_list = torch.index_select(im_dim_list, 0, output[:,0].long())

        scaling_factor = torch.min(self.inp_dim/im_dim_list,1)[0].view(-1,1)

        output[:,[1,3]] -= (self.inp_dim - scaling_factor*im_dim_list[:,0].view(-1,1))/2
        output[:,[2,4]] -= (self.inp_dim - scaling_factor*im_dim_list[:,1].view(-1,1))/2

        output[:,1:5] /= scaling_factor

        for i in range(output.shape[0]):
            output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim_list[i,0])
            output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim_list[i,1])

        colors = pkl.load( open( "yolo/pallete", "rb") )

        list(map(lambda x: self.write( x , im_batches , orig_ims , colors=colors ) , output ) )

        print('orig_ims : shape ',orig_ims[0].shape)
        # print('orig_ims : ',orig_ims[0])

        output_image = Image.fromarray(orig_ims[0])

        img_str = self.img_to_base64_str(output_image)

        # im_bytes = orig_ims[0].tobytes()
        # im_b64 = base64.b64encode(im_bytes)

        # im_b64 = im_b64.decode('utf-8')

        # print( 'im_b64' , im_b64 )

        payload = dict({ 'image' : img_str , 'objects' : objs })

        return payload,output_image