File size: 19,052 Bytes
1f77b91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
from __future__ import division

import torch 
import torch.nn as nn
import torch.nn.functional as F 
from torch.autograd import Variable
import numpy as np
from PIL import Image

from yolo.utils import * 

# from utils import * 

def get_test_input_normal():

    input_image = "dog-cycle-car.png"
    image = Image.open(input_image)
    image = image.convert("RGB")

    img = image.resize(( 416 , 416 ))

    img = np.asarray(img)

    img_ =  img[:,:,::-1].transpose((2,0,1))  # BGR -> RGB | H X W C -> C X H X W 
    img_ = img_[np.newaxis,:,:,:]/255.0       #Add a channel at 0 (for batch) | Normalise
    img_ = torch.from_numpy(img_).float()     #Convert to float
    img_ = Variable(img_)                     # Convert to Variable
    return img_

def get_test_input():
    img = cv2.imread("dog-cycle-car.png")
    img = cv2.resize(img, (416,416))          #Resize to the input dimension
    img_ =  img[:,:,::-1].transpose((2,0,1))  # BGR -> RGB | H X W C -> C X H X W 
    img_ = img_[np.newaxis,:,:,:]/255.0       #Add a channel at 0 (for batch) | Normalise
    img_ = torch.from_numpy(img_).float()     #Convert to float
    img_ = Variable(img_)                     # Convert to Variable
    return img_


def parse_cfg(cfgfile):
    """
    Takes a configuration file
    
    Returns a list of blocks. Each blocks describes a block in the neural
    network to be built. Block is represented as a dictionary in the list
    
    """
    file = open(cfgfile, 'r')
    lines = file.read().split('\n')     #store the lines in a list
    lines = [x for x in lines if len(x) > 0] #get read of the empty lines 
    lines = [x for x in lines if x[0] != '#']  
    lines = [x.rstrip().lstrip() for x in lines]

    
    block = {}
    blocks = []
    
    for line in lines:
        if line[0] == "[":               #This marks the start of a new block
            if len(block) != 0:
                blocks.append(block)
                block = {}
            block["type"] = line[1:-1].rstrip()
        else:
            key,value = line.split("=")
            block[key.rstrip()] = value.lstrip()
    blocks.append(block)

    return blocks
#    print('\n\n'.join([repr(x) for x in blocks]))

import pickle as pkl

class MaxPoolStride1(nn.Module):
    def __init__(self, kernel_size):
        super(MaxPoolStride1, self).__init__()
        self.kernel_size = kernel_size
        self.pad = kernel_size - 1
    
    def forward(self, x):
        padded_x = F.pad(x, (0,self.pad,0,self.pad), mode="replicate")
        pooled_x = nn.MaxPool2d(self.kernel_size, self.pad)(padded_x)
        return pooled_x
    

class EmptyLayer(nn.Module):
    def __init__(self):
        super(EmptyLayer, self).__init__()
        

class DetectionLayer(nn.Module):
    def __init__(self, anchors):
        super(DetectionLayer, self).__init__()
        self.anchors = anchors
    
    def forward(self, x, inp_dim, num_classes, confidence):
        x = x.data
        global CUDA
        prediction = x
        prediction = predict_transform(prediction, inp_dim, self.anchors, num_classes, confidence, CUDA)
        return prediction
        

        


class Upsample(nn.Module):
    def __init__(self, stride=2):
        super(Upsample, self).__init__()
        self.stride = stride
        
    def forward(self, x):
        stride = self.stride
        assert(x.data.dim() == 4)
        B = x.data.size(0)
        C = x.data.size(1)
        H = x.data.size(2)
        W = x.data.size(3)
        ws = stride
        hs = stride
        x = x.view(B, C, H, 1, W, 1).expand(B, C, H, stride, W, stride).contiguous().view(B, C, H*stride, W*stride)
        return x
#       
        
class ReOrgLayer(nn.Module):
    def __init__(self, stride = 2):
        super(ReOrgLayer, self).__init__()
        self.stride= stride
        
    def forward(self,x):
        assert(x.data.dim() == 4)
        B,C,H,W = x.data.shape
        hs = self.stride
        ws = self.stride
        assert(H % hs == 0),  "The stride " + str(self.stride) + " is not a proper divisor of height " + str(H)
        assert(W % ws == 0),  "The stride " + str(self.stride) + " is not a proper divisor of height " + str(W)
        x = x.view(B,C, H // hs, hs, W // ws, ws).transpose(-2,-3).contiguous()
        x = x.view(B,C, H // hs * W // ws, hs, ws)
        x = x.view(B,C, H // hs * W // ws, hs*ws).transpose(-1,-2).contiguous()
        x = x.view(B, C, ws*hs, H // ws, W // ws).transpose(1,2).contiguous()
        x = x.view(B, C*ws*hs, H // ws, W // ws)
        return x


def create_modules(blocks):
    net_info = blocks[0]     #Captures the information about the input and pre-processing    
    
    module_list = nn.ModuleList()
    
    index = 0    #indexing blocks helps with implementing route  layers (skip connections)

    
    prev_filters = 3
    
    output_filters = []
    
    for x in blocks:
        module = nn.Sequential()
        
        if (x["type"] == "net"):
            continue
        
        #If it's a convolutional layer
        if (x["type"] == "convolutional"):
            #Get the info about the layer
            activation = x["activation"]
            try:
                batch_normalize = int(x["batch_normalize"])
                bias = False
            except:
                batch_normalize = 0
                bias = True
                
            filters= int(x["filters"])
            padding = int(x["pad"])
            kernel_size = int(x["size"])
            stride = int(x["stride"])
            
            if padding:
                pad = (kernel_size - 1) // 2
            else:
                pad = 0
                
            #Add the convolutional layer
            conv = nn.Conv2d(prev_filters, filters, kernel_size, stride, pad, bias = bias)
            module.add_module("conv_{0}".format(index), conv)
            
            #Add the Batch Norm Layer
            if batch_normalize:
                bn = nn.BatchNorm2d(filters)
                module.add_module("batch_norm_{0}".format(index), bn)
            
            #Check the activation. 
            #It is either Linear or a Leaky ReLU for YOLO
            if activation == "leaky":
                activn = nn.LeakyReLU(0.1, inplace = True)
                module.add_module("leaky_{0}".format(index), activn)
            
            
            
        #If it's an upsampling layer
        #We use Bilinear2dUpsampling
        
        elif (x["type"] == "upsample"):
            stride = int(x["stride"])
#            upsample = Upsample(stride)
            upsample = nn.Upsample(scale_factor = 2, mode = "nearest")
            module.add_module("upsample_{}".format(index), upsample)
        
        #If it is a route layer
        elif (x["type"] == "route"):
            x["layers"] = x["layers"].split(',')
            
            #Start  of a route
            start = int(x["layers"][0])
            
            #end, if there exists one.
            try:
                end = int(x["layers"][1])
            except:
                end = 0
                
            
            
            #Positive anotation
            if start > 0: 
                start = start - index
            
            if end > 0:
                end = end - index

            
            route = EmptyLayer()
            module.add_module("route_{0}".format(index), route)
            
            
            
            if end < 0:
                filters = output_filters[index + start] + output_filters[index + end]
            else:
                filters= output_filters[index + start]
                        
            
        
        #shortcut corresponds to skip connection
        elif x["type"] == "shortcut":
            from_ = int(x["from"])
            shortcut = EmptyLayer()
            module.add_module("shortcut_{}".format(index), shortcut)
            
            
        elif x["type"] == "maxpool":
            stride = int(x["stride"])
            size = int(x["size"])
            if stride != 1:
                maxpool = nn.MaxPool2d(size, stride)
            else:
                maxpool = MaxPoolStride1(size)
            
            module.add_module("maxpool_{}".format(index), maxpool)
        
        #Yolo is the detection layer
        elif x["type"] == "yolo":
            mask = x["mask"].split(",")
            mask = [int(x) for x in mask]
            
            
            anchors = x["anchors"].split(",")
            anchors = [int(a) for a in anchors]
            anchors = [(anchors[i], anchors[i+1]) for i in range(0, len(anchors),2)]
            anchors = [anchors[i] for i in mask]
            
            detection = DetectionLayer(anchors)
            module.add_module("Detection_{}".format(index), detection)
        
            
            
        else:
            print("Something I dunno")
            assert False


        module_list.append(module)
        prev_filters = filters
        output_filters.append(filters)
        index += 1
        
    
    return (net_info, module_list)



class Darknet(nn.Module):
    def __init__(self, cfgfile):
        super(Darknet, self).__init__()
        self.blocks = parse_cfg(cfgfile)
        self.net_info, self.module_list = create_modules(self.blocks)
        self.header = torch.IntTensor([0,0,0,0])
        self.seen = 0

        
        
    def get_blocks(self):
        return self.blocks
    
    def get_module_list(self):
        return self.module_list

                
    def forward(self, x, CUDA):
        detections = []
        modules = self.blocks[1:]
        outputs = {}   #We cache the outputs for the route layer
        
        
        write = 0
        for i in range(len(modules)):        
            
            module_type = (modules[i]["type"])
            if module_type == "convolutional" or module_type == "upsample" or module_type == "maxpool":
                
                x = self.module_list[i](x)
                outputs[i] = x

                
            elif module_type == "route":
                layers = modules[i]["layers"]
                layers = [int(a) for a in layers]
                
                if (layers[0]) > 0:
                    layers[0] = layers[0] - i

                if len(layers) == 1:
                    x = outputs[i + (layers[0])]

                else:
                    if (layers[1]) > 0:
                        layers[1] = layers[1] - i
                        
                    map1 = outputs[i + layers[0]]
                    map2 = outputs[i + layers[1]]
                    
                    
                    x = torch.cat((map1, map2), 1)
                outputs[i] = x
            
            elif  module_type == "shortcut":
                from_ = int(modules[i]["from"])
                x = outputs[i-1] + outputs[i+from_]
                outputs[i] = x
                
            
            
            elif module_type == 'yolo':        
                
                anchors = self.module_list[i][0].anchors
                #Get the input dimensions
                inp_dim = int (self.net_info["height"])
                
                #Get the number of classes
                num_classes = int (modules[i]["classes"])
                
                #Output the result
                x = x.data
                x = predict_transform(x, inp_dim, anchors, num_classes, CUDA)
                
                if type(x) == int:
                    continue

                
                if not write:
                    detections = x
                    write = 1
                
                else:
                    detections = torch.cat((detections, x), 1)
                
                outputs[i] = outputs[i-1]
                
        
        
        try:
            return detections
        except:
            return 0

    def load_weights_url(self, weightfile):

        # Open the weights file
        fp = get_data_s3(weightfile)

        # The first 5 values are header information 
        # 1. Major version number
        # 2. Minor Version Number
        # 3. Subversion number 
        # 4,5. Images seen by the network (during training)
        header = np.frombuffer( fp.getvalue() , dtype = np.int32, count = 5)
        self.header = torch.from_numpy(header)
        self.seen = self.header[3]

        weights = np.frombuffer( fp.getvalue() , dtype = np.float32)

        ptr = 0
        
        for i in range(len(self.module_list)):
            module_type = self.blocks[i + 1]["type"]

            #If module_type is convolutional load weights
            #Otherwise ignore.

            if module_type == "convolutional":
                model = self.module_list[i]
                try:
                    batch_normalize = int(self.blocks[i+1]["batch_normalize"])
                except:
                    batch_normalize = 0

                conv = model[0]

                if (batch_normalize):
                    bn = model[1]

                    #Get the number of weights of Batch Norm Layer
                    num_bn_biases = bn.bias.numel()

                    #Load the weights
                    bn_biases = torch.from_numpy(weights[ptr:ptr + num_bn_biases])
                    ptr += num_bn_biases

                    bn_weights = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr  += num_bn_biases

                    bn_running_mean = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr  += num_bn_biases

                    bn_running_var = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr  += num_bn_biases

                    #Cast the loaded weights into dims of model weights. 
                    bn_biases = bn_biases.view_as(bn.bias.data)
                    bn_weights = bn_weights.view_as(bn.weight.data)
                    bn_running_mean = bn_running_mean.view_as(bn.running_mean)
                    bn_running_var = bn_running_var.view_as(bn.running_var)

                    #Copy the data to model
                    bn.bias.data.copy_(bn_biases)
                    bn.weight.data.copy_(bn_weights)
                    bn.running_mean.copy_(bn_running_mean)
                    bn.running_var.copy_(bn_running_var)

                else:

                    #Number of biases
                    num_biases = conv.bias.numel()

                    #Load the weights
                    conv_biases = torch.from_numpy(weights[ptr: ptr + num_biases])
                    ptr = ptr + num_biases

                    #reshape the loaded weights according to the dims of the model weights
                    conv_biases = conv_biases.view_as(conv.bias.data)

                    #Finally copy the data
                    conv.bias.data.copy_(conv_biases)
                
                #Let us load the weights for the Convolutional layers
                num_weights = conv.weight.numel()

                #Do the same as above for weights
                conv_weights = torch.from_numpy(weights[ptr:ptr+num_weights])
                ptr = ptr + num_weights

                conv_weights = conv_weights.view_as(conv.weight.data)
                conv.weight.data.copy_(conv_weights)


    def load_weights(self, weightfile):

        # Open the weights file
        fp = open(weightfile, "rb")

        # The first 5 values are header information 
        # 1. Major version number
        # 2. Minor Version Number
        # 3. Subversion number 
        # 4,5. Images seen by the network (during training)
        header = np.fromfile(fp, dtype = np.int32, count = 5)
        self.header = torch.from_numpy(header)
        self.seen = self.header[3]

        weights = np.fromfile(fp, dtype = np.float32)

        ptr = 0
        
        for i in range(len(self.module_list)):
            module_type = self.blocks[i + 1]["type"]

            #If module_type is convolutional load weights
            #Otherwise ignore.

            if module_type == "convolutional":
                model = self.module_list[i]
                try:
                    batch_normalize = int(self.blocks[i+1]["batch_normalize"])
                except:
                    batch_normalize = 0

                conv = model[0]

                if (batch_normalize):
                    bn = model[1]

                    #Get the number of weights of Batch Norm Layer
                    num_bn_biases = bn.bias.numel()

                    #Load the weights
                    bn_biases = torch.from_numpy(weights[ptr:ptr + num_bn_biases])
                    ptr += num_bn_biases

                    bn_weights = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr  += num_bn_biases

                    bn_running_mean = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr  += num_bn_biases

                    bn_running_var = torch.from_numpy(weights[ptr: ptr + num_bn_biases])
                    ptr  += num_bn_biases

                    #Cast the loaded weights into dims of model weights. 
                    bn_biases = bn_biases.view_as(bn.bias.data)
                    bn_weights = bn_weights.view_as(bn.weight.data)
                    bn_running_mean = bn_running_mean.view_as(bn.running_mean)
                    bn_running_var = bn_running_var.view_as(bn.running_var)

                    #Copy the data to model
                    bn.bias.data.copy_(bn_biases)
                    bn.weight.data.copy_(bn_weights)
                    bn.running_mean.copy_(bn_running_mean)
                    bn.running_var.copy_(bn_running_var)

                else:

                    #Number of biases
                    num_biases = conv.bias.numel()

                    #Load the weights
                    conv_biases = torch.from_numpy(weights[ptr: ptr + num_biases])
                    ptr = ptr + num_biases

                    #reshape the loaded weights according to the dims of the model weights
                    conv_biases = conv_biases.view_as(conv.bias.data)

                    #Finally copy the data
                    conv.bias.data.copy_(conv_biases)
                
                #Let us load the weights for the Convolutional layers
                num_weights = conv.weight.numel()

                #Do the same as above for weights
                conv_weights = torch.from_numpy(weights[ptr:ptr+num_weights])
                ptr = ptr + num_weights

                conv_weights = conv_weights.view_as(conv.weight.data)
                conv.weight.data.copy_(conv_weights)


if __name__ == '__main__':
    
    model = Darknet("yolov3.cfg")
    model.load_weights_url("yolov3.weights")

    CUDA = torch.cuda.is_available()

    print(' cuda : ' , CUDA )

    inp = get_test_input()
    
    # if CUDA:

    #     model.cuda()
    #     inp.cuda()

    pred = model( inp , False )

    print (pred)
    print( 'shape' , pred.shape )