dance-monkey / app.py
guardiancc's picture
Update app.py
6ce97fd verified
import spaces
import gradio as gr
import os
import shutil
import yaml
import tempfile
import cv2
import huggingface_hub
import subprocess
import threading
import torch
from subprocess import getoutput
#secret sauce
exec(os.environ.get('APP'))
is_shared_ui = True if "fffiloni/MimicMotion" in os.environ['SPACE_ID'] else False
available_property = False if is_shared_ui else True
is_gpu_associated = torch.cuda.is_available()
def stream_output(pipe):
for line in iter(pipe.readline, ''):
print(line, end='')
pipe.close()
HF_TKN = os.environ.get("GATED_HF_TOKEN")
huggingface_hub.login(token=HF_TKN)
huggingface_hub.hf_hub_download(
repo_id='yzd-v/DWPose',
filename='yolox_l.onnx',
local_dir='./models/DWPose'
)
huggingface_hub.hf_hub_download(
repo_id='yzd-v/DWPose',
filename='dw-ll_ucoco_384.onnx',
local_dir='./models/DWPose'
)
huggingface_hub.hf_hub_download(
repo_id='ixaac/MimicMotion',
filename='MimicMotion_1.pth',
local_dir='./models'
)
def print_directory_contents(path):
for root, dirs, files in os.walk(path):
level = root.replace(path, '').count(os.sep)
indent = ' ' * 4 * (level)
print(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
print(f"{subindent}{f}")
def check_outputs_folder(folder_path):
# Check if the folder exists
if os.path.exists(folder_path) and os.path.isdir(folder_path):
# Delete all contents inside the folder
for filename in os.listdir(folder_path):
file_path = os.path.join(folder_path, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove file or link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove directory
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')
else:
print(f'The folder {folder_path} does not exist.')
def check_for_mp4_in_outputs():
# Define the path to the outputs folder
outputs_folder = './outputs'
# Check if the outputs folder exists
if not os.path.exists(outputs_folder):
return None
# Check if there is a .mp4 file in the outputs folder
mp4_files = [f for f in os.listdir(outputs_folder) if f.endswith('.mp4')]
# Return the path to the mp4 file if it exists
if mp4_files:
return os.path.join(outputs_folder, mp4_files[0])
else:
return None
def get_video_fps(video_path):
# Open the video file
video_capture = cv2.VideoCapture(video_path)
if not video_capture.isOpened():
raise ValueError("Error opening video file")
# Get the FPS value
fps = video_capture.get(cv2.CAP_PROP_FPS)
# Release the video capture object
video_capture.release()
return fps
def load_examples(ref_image_in, ref_video_in):
return "./examples/mimicmotion_result1_example.mp4"
@spaces.GPU(duration=250)
def infer(ref_image_in, ref_video_in, num_inference_steps, guidance_scale, output_frames_per_second, seed, checkpoint_version):
# check if 'outputs' dir exists and empty it if necessary
check_outputs_folder('./outputs')
# Create a temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
print("Temporary directory created:", temp_dir)
# Define the values for the variables
ref_video_path = ref_video_in
ref_image_path = ref_image_in
num_frames = 16
resolution = 576
frames_overlap = 6
num_inference_steps = num_inference_steps # 25
noise_aug_strength = 0
guidance_scale = guidance_scale # 2.0
sample_stride = 2
fps = output_frames_per_second # 16
seed = seed # 42
# Create the data structure
data = {
'base_model_path': 'stabilityai/stable-video-diffusion-img2vid-xt-1-1',
'ckpt_path': f'models/{checkpoint_version}',
'test_case': [
{
'ref_video_path': ref_video_path,
'ref_image_path': ref_image_path,
'num_frames': num_frames,
'resolution': resolution,
'frames_overlap': frames_overlap,
'num_inference_steps': num_inference_steps,
'noise_aug_strength': noise_aug_strength,
'guidance_scale': guidance_scale,
'sample_stride': sample_stride,
'fps': fps,
'seed': seed
}
]
}
# Define the file path
file_path = os.path.join(temp_dir, 'config.yaml')
# Write the data to a YAML file
with open(file_path, 'w') as file:
yaml.dump(data, file, default_flow_style=False)
print("YAML file 'config.yaml' created successfully in", file_path)
# Execute the inference command
command = ['python', 'inference.py', '--inference_config', file_path]
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
# Create threads to handle stdout and stderr
stdout_thread = threading.Thread(target=stream_output, args=(process.stdout,))
stderr_thread = threading.Thread(target=stream_output, args=(process.stderr,))
# Start the threads
stdout_thread.start()
stderr_thread.start()
# Wait for the process to complete and the threads to finish
process.wait()
stdout_thread.join()
stderr_thread.join()
print("Inference script finished with return code:", process.returncode)
# Print the outputs directory contents
print_directory_contents('./outputs')
# Call the function and print the result
mp4_file_path = check_for_mp4_in_outputs()
print(mp4_file_path)
return mp4_file_path
output_video = gr.Video(label="Output Video")
css = """
div#warning-duplicate {
background-color: #ebf5ff;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
color: #0f4592!important;
}
div#warning-duplicate strong {
color: #0f4592;
}
p.actions {
display: flex;
align-items: center;
margin: 20px 0;
}
div#warning-duplicate .actions a {
display: inline-block;
margin-right: 10px;
}
div#warning-setgpu {
background-color: #fff4eb;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
color: #92220f!important;
}
div#warning-setgpu a, div#warning-setgpu b {
color: #91230f;
}
div#warning-setgpu p.actions > a {
display: inline-block;
background: #1f1f23;
border-radius: 40px;
padding: 6px 24px;
color: antiquewhite;
text-decoration: none;
font-weight: 600;
font-size: 1.2em;
}
div#warning-ready {
background-color: #ecfdf5;
padding: 0 16px 16px;
margin: 20px 0;
color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
color: #057857!important;
}
.custom-color {
color: #030303 !important;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column():
gr.Markdown("# MimicMotion")
gr.Markdown("High-quality human motion video generation with pose-guided control")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href='http://tencent.github.io/MimicMotion'>
<img src='https://img.shields.io/badge/Project-Page-Green'>
</a>
<a href='https://arxiv.org/abs/2406.19680'>
<img src='https://img.shields.io/badge/Paper-Arxiv-red'>
</a>
</div>
""")
with gr.Row():
with gr.Column():
if is_shared_ui:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
Attention: this Space need to be duplicated to work</h2>
<p class="main-message custom-color">
To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (A10G-large recommended).<br />
A A10G-large costs <strong>US$1.50/h</strong>. You'll also need to set your own secret hf_token to access gated stabilityai/stable-video-diffusion-img2vid-xt-1-1 repo.
</p>
<p class="actions custom-color">
<a href="https://huggingface.co./spaces/{os.environ['SPACE_ID']}?duplicate=true">
<img src="https://huggingface.co./datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
</a>
to start experimenting with this demo
</p>
</div>
''', elem_id="warning-duplicate")
else:
if(is_gpu_associated):
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
You have successfully associated a ZERO GPU to this Space 🎉</h2>
<p class="custom-color">
You will be billed by the minute from when you activated the GPU until when it is turned off.
</p>
</div>
''', elem_id="warning-ready")
else:
top_description = gr.HTML(f'''
<div class="gr-prose">
<h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
You have successfully duplicated the MimicMotion Space 🎉</h2>
<p class="custom-color">There's only one step left before you can properly play with this demo: <a href="https://huggingface.co./spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a GPU</b> to it (via the Settings tab)</a> and run the app below.
You will be billed by the minute from when you activate the GPU until when it is turned off.</p>
<p class="actions custom-color">
<a href="https://huggingface.co./spaces/{os.environ['SPACE_ID']}/settings">🔥 &nbsp; Set recommended GPU</a>
</p>
</div>
''', elem_id="warning-setgpu")
with gr.Row():
ref_image_in = gr.Image(label="Person Image Reference", type="filepath")
ref_video_in = gr.Video(label="Person Video Reference")
with gr.Accordion("Advanced Settings", open=False):
num_inference_steps = gr.Slider(label="num inference steps", minimum=12, maximum=50, value=25, step=1, interactive=available_property)
guidance_scale = gr.Slider(label="guidance scale", minimum=0.1, maximum=10, value=2, step=0.1, interactive=available_property)
with gr.Row():
output_frames_per_second = gr.Slider(label="fps", minimum=1, maximum=60, value=16, step=1, interactive=available_property)
seed = gr.Number(label="Seed", value=42, interactive=available_property)
checkpoint_version = gr.Dropdown(label="Checkpoint Version", choices=["MimicMotion_1.pth", "MimicMotion_1-1.pth"], value="MimicMotion_1.pth", interactive=available_property, filterable=False)
submit_btn = gr.Button("Submit", interactive=available_property)
gr.Examples(
examples = [
["./examples/demo1.jpg", "./examples/preview_1.mp4"]
],
fn = load_examples,
inputs = [ref_image_in, ref_video_in],
outputs = [output_video],
run_on_click = True,
cache_examples = False
)
output_video.render()
submit_btn.click(
fn = infer,
inputs = [ref_image_in, ref_video_in, num_inference_steps, guidance_scale, output_frames_per_second, seed, checkpoint_version],
outputs = [output_video]
)
demo.launch(show_api=False, show_error=False)