Spaces:
Running
on
Zero
Running
on
Zero
import librosa | |
import librosa.filters | |
import numpy as np | |
# import tensorflow as tf | |
from scipy import signal | |
from scipy.io import wavfile | |
hp_num_mels = 80 | |
hp_rescale = True | |
hp_rescaling_max = 0.9 | |
hp_use_lws = False | |
hp_n_fft = 800 | |
hp_hop_size = 200 | |
hp_win_size = 800 | |
hp_sample_rate = 16000 | |
hp_frame_shift_ms = None | |
hp_signal_normalization = True | |
hp_allow_clipping_in_normalization = True | |
hp_symmetric_mels = True | |
hp_max_abs_value = 4.0 | |
hp_preemphasize = True | |
hp_preemphasis = 0.97 | |
hp_min_level_db = -100 | |
hp_ref_level_db = 20 | |
hp_fmin = 55 | |
hp_fmax = 7600 | |
def load_wav(path, sr): | |
return librosa.core.load(path, sr=sr)[0] | |
def save_wav(wav, path, sr): | |
wav *= 32767 / max(0.01, np.max(np.abs(wav))) | |
# proposed by @dsmiller | |
wavfile.write(path, sr, wav.astype(np.int16)) | |
def save_wavenet_wav(wav, path, sr): | |
librosa.output.write_wav(path, wav, sr=sr) | |
def preemphasis(wav, k, preemphasize=True): | |
if preemphasize: | |
return signal.lfilter([1, -k], [1], wav) | |
return wav | |
def inv_preemphasis(wav, k, inv_preemphasize=True): | |
if inv_preemphasize: | |
return signal.lfilter([1], [1, -k], wav) | |
return wav | |
def get_hop_size(): | |
hop_size = hp_hop_size | |
if hop_size is None: | |
assert hp_frame_shift_ms is not None | |
hop_size = int(hp_frame_shift_ms / 1000 * hp_sample_rate) | |
return hop_size | |
def linearspectrogram(wav): | |
D = _stft(preemphasis(wav, hp_preemphasis, hp_preemphasize)) | |
S = _amp_to_db(np.abs(D)) - hp_ref_level_db | |
if hp_signal_normalization: | |
return _normalize(S) | |
return S | |
def melspectrogram(wav): | |
D = _stft(preemphasis(wav, hp_preemphasis, hp_preemphasize)) | |
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp_ref_level_db | |
if hp_signal_normalization: | |
return _normalize(S) | |
return S | |
def _lws_processor(): | |
import lws | |
return lws.lws(hp_n_fft, get_hop_size(), fftsize=hp_win_size, mode="speech") | |
def _stft(y): | |
if hp_use_lws: | |
return _lws_processor(hp).stft(y).T | |
else: | |
return librosa.stft(y=y, n_fft=hp_n_fft, hop_length=get_hop_size(), win_length=hp_win_size) | |
########################################################## | |
# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) | |
def num_frames(length, fsize, fshift): | |
"""Compute number of time frames of spectrogram""" | |
pad = fsize - fshift | |
if length % fshift == 0: | |
M = (length + pad * 2 - fsize) // fshift + 1 | |
else: | |
M = (length + pad * 2 - fsize) // fshift + 2 | |
return M | |
def pad_lr(x, fsize, fshift): | |
"""Compute left and right padding""" | |
M = num_frames(len(x), fsize, fshift) | |
pad = fsize - fshift | |
T = len(x) + 2 * pad | |
r = (M - 1) * fshift + fsize - T | |
return pad, pad + r | |
########################################################## | |
# Librosa correct padding | |
def librosa_pad_lr(x, fsize, fshift): | |
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] | |
# Conversions | |
_mel_basis = None | |
def _linear_to_mel(spectogram): | |
global _mel_basis | |
if _mel_basis is None: | |
_mel_basis = _build_mel_basis() | |
return np.dot(_mel_basis, spectogram) | |
def _build_mel_basis(): | |
assert hp_fmax <= hp_sample_rate // 2 | |
return librosa.filters.mel(hp_sample_rate, hp_n_fft, n_mels=hp_num_mels, fmin=hp_fmin, fmax=hp_fmax) | |
def _amp_to_db(x): | |
min_level = np.exp(hp_min_level_db / 20 * np.log(10)) | |
return 20 * np.log10(np.maximum(min_level, x)) | |
def _normalize(S): | |
if hp_allow_clipping_in_normalization: | |
if hp_symmetric_mels: | |
return np.clip( | |
(2 * hp_max_abs_value) * ((S - hp_min_level_db) / (-hp_min_level_db)) - hp_max_abs_value, | |
-hp_max_abs_value, | |
hp_max_abs_value, | |
) | |
else: | |
return np.clip( | |
hp_max_abs_value * ((S - hp_min_level_db) / (-hp_min_level_db)), | |
0, | |
hp_max_abs_value, | |
) | |
assert S.max() <= 0 and S.min() - hp_min_level_db >= 0 | |
if hp_symmetric_mels: | |
return (2 * hp_max_abs_value) * ((S - hp_min_level_db) / (-hp_min_level_db)) - hp_max_abs_value | |
else: | |
return hp_max_abs_value * ((S - hp_min_level_db) / (-hp_min_level_db)) | |