update
2b34e02
import librosa
import librosa.filters
import numpy as np
# import tensorflow as tf
from scipy import signal
from scipy.io import wavfile
hp_num_mels = 80
hp_rescale = True
hp_rescaling_max = 0.9
hp_use_lws = False
hp_n_fft = 800
hp_hop_size = 200
hp_win_size = 800
hp_sample_rate = 16000
hp_frame_shift_ms = None
hp_signal_normalization = True
hp_allow_clipping_in_normalization = True
hp_symmetric_mels = True
hp_max_abs_value = 4.0
hp_preemphasize = True
hp_preemphasis = 0.97
hp_min_level_db = -100
hp_ref_level_db = 20
hp_fmin = 55
hp_fmax = 7600
def load_wav(path, sr):
return librosa.core.load(path, sr=sr)[0]
def save_wav(wav, path, sr):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
# proposed by @dsmiller
wavfile.write(path, sr, wav.astype(np.int16))
def save_wavenet_wav(wav, path, sr):
librosa.output.write_wav(path, wav, sr=sr)
def preemphasis(wav, k, preemphasize=True):
if preemphasize:
return signal.lfilter([1, -k], [1], wav)
return wav
def inv_preemphasis(wav, k, inv_preemphasize=True):
if inv_preemphasize:
return signal.lfilter([1], [1, -k], wav)
return wav
def get_hop_size():
hop_size = hp_hop_size
if hop_size is None:
assert hp_frame_shift_ms is not None
hop_size = int(hp_frame_shift_ms / 1000 * hp_sample_rate)
return hop_size
def linearspectrogram(wav):
D = _stft(preemphasis(wav, hp_preemphasis, hp_preemphasize))
S = _amp_to_db(np.abs(D)) - hp_ref_level_db
if hp_signal_normalization:
return _normalize(S)
return S
def melspectrogram(wav):
D = _stft(preemphasis(wav, hp_preemphasis, hp_preemphasize))
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp_ref_level_db
if hp_signal_normalization:
return _normalize(S)
return S
def _lws_processor():
import lws
return lws.lws(hp_n_fft, get_hop_size(), fftsize=hp_win_size, mode="speech")
def _stft(y):
if hp_use_lws:
return _lws_processor(hp).stft(y).T
else:
return librosa.stft(y=y, n_fft=hp_n_fft, hop_length=get_hop_size(), win_length=hp_win_size)
##########################################################
# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
"""Compute number of time frames of spectrogram"""
pad = fsize - fshift
if length % fshift == 0:
M = (length + pad * 2 - fsize) // fshift + 1
else:
M = (length + pad * 2 - fsize) // fshift + 2
return M
def pad_lr(x, fsize, fshift):
"""Compute left and right padding"""
M = num_frames(len(x), fsize, fshift)
pad = fsize - fshift
T = len(x) + 2 * pad
r = (M - 1) * fshift + fsize - T
return pad, pad + r
##########################################################
# Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
# Conversions
_mel_basis = None
def _linear_to_mel(spectogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectogram)
def _build_mel_basis():
assert hp_fmax <= hp_sample_rate // 2
return librosa.filters.mel(hp_sample_rate, hp_n_fft, n_mels=hp_num_mels, fmin=hp_fmin, fmax=hp_fmax)
def _amp_to_db(x):
min_level = np.exp(hp_min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))
def _normalize(S):
if hp_allow_clipping_in_normalization:
if hp_symmetric_mels:
return np.clip(
(2 * hp_max_abs_value) * ((S - hp_min_level_db) / (-hp_min_level_db)) - hp_max_abs_value,
-hp_max_abs_value,
hp_max_abs_value,
)
else:
return np.clip(
hp_max_abs_value * ((S - hp_min_level_db) / (-hp_min_level_db)),
0,
hp_max_abs_value,
)
assert S.max() <= 0 and S.min() - hp_min_level_db >= 0
if hp_symmetric_mels:
return (2 * hp_max_abs_value) * ((S - hp_min_level_db) / (-hp_min_level_db)) - hp_max_abs_value
else:
return hp_max_abs_value * ((S - hp_min_level_db) / (-hp_min_level_db))