import gradio as gr import torch from diffusers import StableDiffusionPipeline from PIL import Image import os auth_token = os.getenv("auth_token") model_id = "CompVis/stable-diffusion-v1-4" device = "cpu" pipe = StableDiffusionPipeline.from_pretrained( model_id, use_auth_token=auth_token, revision="fp16", torch_dtype=torch.float16 ) pipe = pipe.to(device) def infer(prompt, samples, steps, scale, seed): generator = torch.Generator(device=device).manual_seed(seed) images_list = pipe( [prompt] * samples, num_inference_steps=steps, guidance_scale=scale, generator=generator, ) images = [] safe_image = Image.open(r"unsafe.png") for i, image in enumerate(images_list["sample"]): if images_list["nsfw_content_detected"][i]: images.append(safe_image) else: images.append(image) return images block = gr.Blocks() with block: with gr.Group(): with gr.Row(): text = gr.Textbox( label="Enter your prompt", max_lines=1, placeholder="Enter your prompt", container=False, ) btn = gr.Button("Generate image") gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery", columns=[2], height="auto", ) advanced_button = gr.Button("Advanced options", elem_id="advanced-btn") with gr.Row(elem_id="advanced-options"): samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1) steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1) scale = gr.Slider( label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1 ) seed = gr.Slider( label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True, ) text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery) btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery) advanced_button.click( None, [], text, ) block.launch()