aliabd HF staff commited on
Commit
359f1ec
·
1 Parent(s): 095cf56

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +1 -1
  2. requirements.txt +1 -1
  3. run.ipynb +1 -1
  4. run.py +23 -25
README.md CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
- sdk_version: 3.40.1
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
 
5
  colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
+ sdk_version: 3.41.2
9
  app_file: run.py
10
  pinned: false
11
  hf_oauth: true
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
- https://gradio-main-build.s3.amazonaws.com/2e720c0c47ea94923ab689f928308157f2c30b2d/gradio-3.40.1-py3-none-any.whl
2
  diffusers
3
  transformers
4
  nvidia-ml-py3
 
1
+ https://gradio-main-build.s3.amazonaws.com/d76d50112328711b1a692b80c1e88a085b15b301/gradio-3.41.2-py3-none-any.whl
2
  diffusers
3
  transformers
4
  nvidia-ml-py3
run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: stable-diffusion\n", "### Note: This is a simplified version of the code needed to create the Stable Diffusion demo. See full code here: https://hf.co/spaces/stabilityai/stable-diffusion/tree/main\n", " "]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio diffusers transformers nvidia-ml-py3 ftfy torch"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import torch\n", "from diffusers import StableDiffusionPipeline\n", "from PIL import Image \n", "import os\n", "\n", "auth_token = os.getenv(\"auth_token\")\n", "model_id = \"CompVis/stable-diffusion-v1-4\"\n", "device = \"cpu\"\n", "pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=auth_token, revision=\"fp16\", torch_dtype=torch.float16)\n", "pipe = pipe.to(device)\n", "\n", "def infer(prompt, samples, steps, scale, seed): \n", " generator = torch.Generator(device=device).manual_seed(seed)\n", " images_list = pipe(\n", " [prompt] * samples,\n", " num_inference_steps=steps,\n", " guidance_scale=scale,\n", " generator=generator,\n", " )\n", " images = []\n", " safe_image = Image.open(r\"unsafe.png\")\n", " for i, image in enumerate(images_list[\"sample\"]):\n", " if(images_list[\"nsfw_content_detected\"][i]):\n", " images.append(safe_image)\n", " else:\n", " images.append(image)\n", " return images\n", " \n", "\n", "\n", "block = gr.Blocks()\n", "\n", "with block:\n", " with gr.Group():\n", " with gr.Box():\n", " with gr.Row().style(mobile_collapse=False, equal_height=True):\n", " text = gr.Textbox(\n", " label=\"Enter your prompt\",\n", " show_label=False,\n", " max_lines=1,\n", " placeholder=\"Enter your prompt\",\n", " ).style(\n", " border=(True, False, True, True),\n", " rounded=(True, False, False, True),\n", " container=False,\n", " )\n", " btn = gr.Button(\"Generate image\").style(\n", " margin=False,\n", " rounded=(False, True, True, False),\n", " )\n", " gallery = gr.Gallery(\n", " label=\"Generated images\", show_label=False, elem_id=\"gallery\"\n", " ).style(grid=[2], height=\"auto\")\n", "\n", " advanced_button = gr.Button(\"Advanced options\", elem_id=\"advanced-btn\")\n", "\n", " with gr.Row(elem_id=\"advanced-options\"):\n", " samples = gr.Slider(label=\"Images\", minimum=1, maximum=4, value=4, step=1)\n", " steps = gr.Slider(label=\"Steps\", minimum=1, maximum=50, value=45, step=1)\n", " scale = gr.Slider(\n", " label=\"Guidance Scale\", minimum=0, maximum=50, value=7.5, step=0.1\n", " )\n", " seed = gr.Slider(\n", " label=\"Seed\",\n", " minimum=0,\n", " maximum=2147483647,\n", " step=1,\n", " randomize=True,\n", " )\n", " text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)\n", " btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)\n", " advanced_button.click(\n", " None,\n", " [],\n", " text,\n", " )\n", " \n", "block.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: stable-diffusion\n", "### Note: This is a simplified version of the code needed to create the Stable Diffusion demo. See full code here: https://hf.co/spaces/stabilityai/stable-diffusion/tree/main\n", " "]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio diffusers transformers nvidia-ml-py3 ftfy torch"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "import torch\n", "from diffusers import StableDiffusionPipeline\n", "from PIL import Image\n", "import os\n", "\n", "auth_token = os.getenv(\"auth_token\")\n", "model_id = \"CompVis/stable-diffusion-v1-4\"\n", "device = \"cpu\"\n", "pipe = StableDiffusionPipeline.from_pretrained(\n", " model_id, use_auth_token=auth_token, revision=\"fp16\", torch_dtype=torch.float16\n", ")\n", "pipe = pipe.to(device)\n", "\n", "\n", "def infer(prompt, samples, steps, scale, seed):\n", " generator = torch.Generator(device=device).manual_seed(seed)\n", " images_list = pipe(\n", " [prompt] * samples,\n", " num_inference_steps=steps,\n", " guidance_scale=scale,\n", " generator=generator,\n", " )\n", " images = []\n", " safe_image = Image.open(r\"unsafe.png\")\n", " for i, image in enumerate(images_list[\"sample\"]):\n", " if images_list[\"nsfw_content_detected\"][i]:\n", " images.append(safe_image)\n", " else:\n", " images.append(image)\n", " return images\n", "\n", "\n", "block = gr.Blocks()\n", "\n", "with block:\n", " with gr.Group():\n", " with gr.Row():\n", " text = gr.Textbox(\n", " label=\"Enter your prompt\",\n", " max_lines=1,\n", " placeholder=\"Enter your prompt\",\n", " container=False,\n", " )\n", " btn = gr.Button(\"Generate image\")\n", " gallery = gr.Gallery(\n", " label=\"Generated images\",\n", " show_label=False,\n", " elem_id=\"gallery\",\n", " columns=[2],\n", " height=\"auto\",\n", " )\n", "\n", " advanced_button = gr.Button(\"Advanced options\", elem_id=\"advanced-btn\")\n", "\n", " with gr.Row(elem_id=\"advanced-options\"):\n", " samples = gr.Slider(label=\"Images\", minimum=1, maximum=4, value=4, step=1)\n", " steps = gr.Slider(label=\"Steps\", minimum=1, maximum=50, value=45, step=1)\n", " scale = gr.Slider(\n", " label=\"Guidance Scale\", minimum=0, maximum=50, value=7.5, step=0.1\n", " )\n", " seed = gr.Slider(\n", " label=\"Seed\",\n", " minimum=0,\n", " maximum=2147483647,\n", " step=1,\n", " randomize=True,\n", " )\n", " text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)\n", " btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)\n", " advanced_button.click(\n", " None,\n", " [],\n", " text,\n", " )\n", "\n", "block.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
run.py CHANGED
@@ -1,16 +1,19 @@
1
  import gradio as gr
2
  import torch
3
  from diffusers import StableDiffusionPipeline
4
- from PIL import Image
5
  import os
6
 
7
  auth_token = os.getenv("auth_token")
8
  model_id = "CompVis/stable-diffusion-v1-4"
9
  device = "cpu"
10
- pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=auth_token, revision="fp16", torch_dtype=torch.float16)
 
 
11
  pipe = pipe.to(device)
12
 
13
- def infer(prompt, samples, steps, scale, seed):
 
14
  generator = torch.Generator(device=device).manual_seed(seed)
15
  images_list = pipe(
16
  [prompt] * samples,
@@ -21,37 +24,32 @@ def infer(prompt, samples, steps, scale, seed):
21
  images = []
22
  safe_image = Image.open(r"unsafe.png")
23
  for i, image in enumerate(images_list["sample"]):
24
- if(images_list["nsfw_content_detected"][i]):
25
  images.append(safe_image)
26
  else:
27
  images.append(image)
28
  return images
29
-
30
 
31
 
32
  block = gr.Blocks()
33
 
34
  with block:
35
  with gr.Group():
36
- with gr.Box():
37
- with gr.Row().style(mobile_collapse=False, equal_height=True):
38
- text = gr.Textbox(
39
- label="Enter your prompt",
40
- show_label=False,
41
- max_lines=1,
42
- placeholder="Enter your prompt",
43
- ).style(
44
- border=(True, False, True, True),
45
- rounded=(True, False, False, True),
46
- container=False,
47
- )
48
- btn = gr.Button("Generate image").style(
49
- margin=False,
50
- rounded=(False, True, True, False),
51
- )
52
  gallery = gr.Gallery(
53
- label="Generated images", show_label=False, elem_id="gallery"
54
- ).style(grid=[2], height="auto")
 
 
 
 
55
 
56
  advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
57
 
@@ -75,5 +73,5 @@ with block:
75
  [],
76
  text,
77
  )
78
-
79
- block.launch()
 
1
  import gradio as gr
2
  import torch
3
  from diffusers import StableDiffusionPipeline
4
+ from PIL import Image
5
  import os
6
 
7
  auth_token = os.getenv("auth_token")
8
  model_id = "CompVis/stable-diffusion-v1-4"
9
  device = "cpu"
10
+ pipe = StableDiffusionPipeline.from_pretrained(
11
+ model_id, use_auth_token=auth_token, revision="fp16", torch_dtype=torch.float16
12
+ )
13
  pipe = pipe.to(device)
14
 
15
+
16
+ def infer(prompt, samples, steps, scale, seed):
17
  generator = torch.Generator(device=device).manual_seed(seed)
18
  images_list = pipe(
19
  [prompt] * samples,
 
24
  images = []
25
  safe_image = Image.open(r"unsafe.png")
26
  for i, image in enumerate(images_list["sample"]):
27
+ if images_list["nsfw_content_detected"][i]:
28
  images.append(safe_image)
29
  else:
30
  images.append(image)
31
  return images
 
32
 
33
 
34
  block = gr.Blocks()
35
 
36
  with block:
37
  with gr.Group():
38
+ with gr.Row():
39
+ text = gr.Textbox(
40
+ label="Enter your prompt",
41
+ max_lines=1,
42
+ placeholder="Enter your prompt",
43
+ container=False,
44
+ )
45
+ btn = gr.Button("Generate image")
 
 
 
 
 
 
 
 
46
  gallery = gr.Gallery(
47
+ label="Generated images",
48
+ show_label=False,
49
+ elem_id="gallery",
50
+ columns=[2],
51
+ height="auto",
52
+ )
53
 
54
  advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
55
 
 
73
  [],
74
  text,
75
  )
76
+
77
+ block.launch()