# Finetuning RoBERTa on GLUE tasks ### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands: ```bash wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py python download_glue_data.py --data_dir glue_data --tasks all ``` ### 2) Preprocess GLUE task data: ```bash ./examples/roberta/preprocess_GLUE_tasks.sh glue_data ``` `glue_task_name` is one of the following: `{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}` Use `ALL` for preprocessing all the glue tasks. ### 3) Fine-tuning on GLUE task: Example fine-tuning cmd for `RTE` task ```bash TOTAL_NUM_UPDATES=2036 # 10 epochs through RTE for bsz 16 WARMUP_UPDATES=122 # 6 percent of the number of updates LR=2e-05 # Peak LR for polynomial LR scheduler. NUM_CLASSES=2 MAX_SENTENCES=16 # Batch size. ROBERTA_PATH=/path/to/roberta/model.pt CUDA_VISIBLE_DEVICES=0 fairseq-train RTE-bin/ \ --restore-file $ROBERTA_PATH \ --max-positions 512 \ --batch-size $MAX_SENTENCES \ --max-tokens 4400 \ --task sentence_prediction \ --reset-optimizer --reset-dataloader --reset-meters \ --required-batch-size-multiple 1 \ --init-token 0 --separator-token 2 \ --arch roberta_large \ --criterion sentence_prediction \ --num-classes $NUM_CLASSES \ --dropout 0.1 --attention-dropout 0.1 \ --weight-decay 0.1 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-06 \ --clip-norm 0.0 \ --lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ --fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ --max-epoch 10 \ --find-unused-parameters \ --best-checkpoint-metric accuracy --maximize-best-checkpoint-metric; ``` For each of the GLUE task, you will need to use following cmd-line arguments: Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B ---|---|---|---|---|---|---|---|--- `--num-classes` | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 `--lr` | 1e-5 | 1e-5 | 1e-5 | 2e-5 | 1e-5 | 1e-5 | 1e-5 | 2e-5 `--batch-size` | 32 | 32 | 32 | 16 | 32 | 16 | 16 | 16 `--total-num-update` | 123873 | 33112 | 113272 | 2036 | 20935 | 2296 | 5336 | 3598 `--warmup-updates` | 7432 | 1986 | 28318 | 122 | 1256 | 137 | 320 | 214 For `STS-B` additionally add `--regression-target --best-checkpoint-metric loss` and remove `--maximize-best-checkpoint-metric`. **Note:** a) `--total-num-updates` is used by `--polynomial_decay` scheduler and is calculated for `--max-epoch=10` and `--batch-size=16/32` depending on the task. b) Above cmd-args and hyperparams are tested on one Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`. c) All the settings in above table are suggested settings based on our hyperparam search within a fixed search space (for careful comparison across models). You might be able to find better metrics with wider hyperparam search. ### Inference on GLUE task After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet: ```python from fairseq.models.roberta import RobertaModel roberta = RobertaModel.from_pretrained( 'checkpoints/', checkpoint_file='checkpoint_best.pt', data_name_or_path='RTE-bin' ) label_fn = lambda label: roberta.task.label_dictionary.string( [label + roberta.task.label_dictionary.nspecial] ) ncorrect, nsamples = 0, 0 roberta.cuda() roberta.eval() with open('glue_data/RTE/dev.tsv') as fin: fin.readline() for index, line in enumerate(fin): tokens = line.strip().split('\t') sent1, sent2, target = tokens[1], tokens[2], tokens[3] tokens = roberta.encode(sent1, sent2) prediction = roberta.predict('sentence_classification_head', tokens).argmax().item() prediction_label = label_fn(prediction) ncorrect += int(prediction_label == target) nsamples += 1 print('| Accuracy: ', float(ncorrect)/float(nsamples)) ```