HuBERT / fairseq_cli /train.py
aliabd
full working demo
d5175d3
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Train a new model on one or across multiple GPUs.
"""
import argparse
import logging
import math
import os
import sys
from typing import Dict, Optional, Any, List, Tuple, Callable
# We need to setup root logger before importing any fairseq libraries.
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
logger = logging.getLogger("fairseq_cli.train")
import numpy as np
import torch
from fairseq import (
checkpoint_utils,
options,
quantization_utils,
tasks,
utils,
)
from fairseq.data import iterators, data_utils
from fairseq.data.plasma_utils import PlasmaStore
from fairseq.dataclass.configs import FairseqConfig
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.distributed import fsdp_enable_wrap, fsdp_wrap, utils as distributed_utils
from fairseq.file_io import PathManager
from fairseq.logging import meters, metrics, progress_bar
from fairseq.model_parallel.megatron_trainer import MegatronTrainer
from fairseq.trainer import Trainer
from omegaconf import DictConfig, OmegaConf
def main(cfg: FairseqConfig) -> None:
if isinstance(cfg, argparse.Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
utils.import_user_module(cfg.common)
if distributed_utils.is_master(cfg.distributed_training) and "job_logging_cfg" in cfg:
# make hydra logging work with ddp (see # see https://github.com/facebookresearch/hydra/issues/1126)
logging.config.dictConfig(OmegaConf.to_container(cfg.job_logging_cfg))
assert (
cfg.dataset.max_tokens is not None or cfg.dataset.batch_size is not None
), "Must specify batch size either with --max-tokens or --batch-size"
metrics.reset()
if cfg.common.log_file is not None:
handler = logging.FileHandler(filename=cfg.common.log_file)
logger.addHandler(handler)
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
if distributed_utils.is_master(cfg.distributed_training):
checkpoint_utils.verify_checkpoint_directory(cfg.checkpoint.save_dir)
# Print args
logger.info(cfg)
if cfg.checkpoint.write_checkpoints_asynchronously:
try:
import iopath # noqa: F401
except ImportError:
logging.exception(
"Asynchronous checkpoint writing is specified but iopath is "
"not installed: `pip install iopath`"
)
return
# Setup task, e.g., translation, language modeling, etc.
task = tasks.setup_task(cfg.task)
assert cfg.criterion, "Please specify criterion to train a model"
# Build model and criterion
if cfg.distributed_training.ddp_backend == "fully_sharded":
with fsdp_enable_wrap(cfg.distributed_training):
model = fsdp_wrap(task.build_model(cfg.model))
else:
model = task.build_model(cfg.model)
criterion = task.build_criterion(cfg.criterion)
logger.info(model)
logger.info("task: {}".format(task.__class__.__name__))
logger.info("model: {}".format(model.__class__.__name__))
logger.info("criterion: {}".format(criterion.__class__.__name__))
logger.info(
"num. shared model params: {:,} (num. trained: {:,})".format(
sum(p.numel() for p in model.parameters() if not getattr(p, "expert", False)),
sum(p.numel() for p in model.parameters() if not getattr(p, "expert", False) and p.requires_grad)
)
)
logger.info(
"num. expert model params: {} (num. trained: {})".format(
sum(p.numel() for p in model.parameters() if getattr(p, "expert", False)),
sum(p.numel() for p in model.parameters() if getattr(p, "expert", False) and p.requires_grad),
)
)
# Load valid dataset (we load training data below, based on the latest checkpoint)
# We load the valid dataset AFTER building the model
data_utils.raise_if_valid_subsets_unintentionally_ignored(cfg)
if cfg.dataset.combine_valid_subsets:
task.load_dataset("valid", combine=True, epoch=1)
else:
for valid_sub_split in cfg.dataset.valid_subset.split(","):
task.load_dataset(valid_sub_split, combine=False, epoch=1)
# (optionally) Configure quantization
if cfg.common.quantization_config_path is not None:
quantizer = quantization_utils.Quantizer(
config_path=cfg.common.quantization_config_path,
max_epoch=cfg.optimization.max_epoch,
max_update=cfg.optimization.max_update,
)
else:
quantizer = None
# Build trainer
if cfg.common.model_parallel_size == 1:
trainer = Trainer(cfg, task, model, criterion, quantizer)
else:
trainer = MegatronTrainer(cfg, task, model, criterion)
logger.info(
"training on {} devices (GPUs/TPUs)".format(
cfg.distributed_training.distributed_world_size
)
)
logger.info(
"max tokens per device = {} and max sentences per device = {}".format(
cfg.dataset.max_tokens,
cfg.dataset.batch_size,
)
)
# Load the latest checkpoint if one is available and restore the
# corresponding train iterator
extra_state, epoch_itr = checkpoint_utils.load_checkpoint(
cfg.checkpoint,
trainer,
# don't cache epoch iterators for sharded datasets
disable_iterator_cache=task.has_sharded_data("train"),
)
if cfg.common.tpu:
import torch_xla.core.xla_model as xm
xm.rendezvous("load_checkpoint") # wait for all workers
max_epoch = cfg.optimization.max_epoch or math.inf
lr = trainer.get_lr()
train_meter = meters.StopwatchMeter()
train_meter.start()
while epoch_itr.next_epoch_idx <= max_epoch:
if lr <= cfg.optimization.stop_min_lr:
logger.info(
f"stopping training because current learning rate ({lr}) is smaller "
"than or equal to minimum learning rate "
f"(--stop-min-lr={cfg.optimization.stop_min_lr})"
)
break
# train for one epoch
valid_losses, should_stop = train(cfg, trainer, task, epoch_itr)
if should_stop:
break
# only use first validation loss to update the learning rate
lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
epoch_itr = trainer.get_train_iterator(
epoch_itr.next_epoch_idx,
# sharded data: get train iterator for next epoch
load_dataset=task.has_sharded_data("train"),
# don't cache epoch iterators for sharded datasets
disable_iterator_cache=task.has_sharded_data("train"),
)
train_meter.stop()
logger.info("done training in {:.1f} seconds".format(train_meter.sum))
# ioPath implementation to wait for all asynchronous file writes to complete.
if cfg.checkpoint.write_checkpoints_asynchronously:
logger.info(
"ioPath PathManager waiting for all asynchronous checkpoint "
"writes to finish."
)
PathManager.async_close()
logger.info("ioPath PathManager finished waiting.")
def should_stop_early(cfg: DictConfig, valid_loss: float) -> bool:
# skip check if no validation was done in the current epoch
if valid_loss is None:
return False
if cfg.checkpoint.patience <= 0:
return False
def is_better(a, b):
return a > b if cfg.checkpoint.maximize_best_checkpoint_metric else a < b
prev_best = getattr(should_stop_early, "best", None)
if prev_best is None or is_better(valid_loss, prev_best):
should_stop_early.best = valid_loss
should_stop_early.num_runs = 0
return False
else:
should_stop_early.num_runs += 1
if should_stop_early.num_runs >= cfg.checkpoint.patience:
logger.info(
"early stop since valid performance hasn't improved for last {} runs".format(
cfg.checkpoint.patience
)
)
return True
else:
return False
@metrics.aggregate("train")
def train(
cfg: DictConfig, trainer: Trainer, task: tasks.FairseqTask, epoch_itr
) -> Tuple[List[Optional[float]], bool]:
"""Train the model for one epoch and return validation losses."""
# Initialize data iterator
itr = epoch_itr.next_epoch_itr(
fix_batches_to_gpus=cfg.distributed_training.fix_batches_to_gpus,
shuffle=(epoch_itr.next_epoch_idx > cfg.dataset.curriculum),
)
update_freq = (
cfg.optimization.update_freq[epoch_itr.epoch - 1]
if epoch_itr.epoch <= len(cfg.optimization.update_freq)
else cfg.optimization.update_freq[-1]
)
itr = iterators.GroupedIterator(itr, update_freq)
if cfg.common.tpu:
itr = utils.tpu_data_loader(itr)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_file=cfg.common.log_file,
log_interval=cfg.common.log_interval,
epoch=epoch_itr.epoch,
tensorboard_logdir=(
cfg.common.tensorboard_logdir
if distributed_utils.is_master(cfg.distributed_training)
else None
),
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
wandb_project=(
cfg.common.wandb_project
if distributed_utils.is_master(cfg.distributed_training)
else None
),
wandb_run_name=os.environ.get(
"WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir)
),
azureml_logging=(
cfg.common.azureml_logging
if distributed_utils.is_master(cfg.distributed_training)
else False
),
)
progress.update_config(_flatten_config(cfg))
trainer.begin_epoch(epoch_itr.epoch)
valid_subsets = cfg.dataset.valid_subset.split(",")
should_stop = False
num_updates = trainer.get_num_updates()
logger.info("Start iterating over samples")
for i, samples in enumerate(progress):
with metrics.aggregate("train_inner"), torch.autograd.profiler.record_function(
"train_step-%d" % i
):
log_output = trainer.train_step(samples)
if log_output is not None: # not OOM, overflow, ...
# log mid-epoch stats
num_updates = trainer.get_num_updates()
if num_updates % cfg.common.log_interval == 0:
stats = get_training_stats(metrics.get_smoothed_values("train_inner"))
progress.log(stats, tag="train_inner", step=num_updates)
# reset mid-epoch stats after each log interval
# the end-of-epoch stats will still be preserved
metrics.reset_meters("train_inner")
end_of_epoch = not itr.has_next()
valid_losses, should_stop = validate_and_save(
cfg, trainer, task, epoch_itr, valid_subsets, end_of_epoch
)
if should_stop:
break
# log end-of-epoch stats
logger.info("end of epoch {} (average epoch stats below)".format(epoch_itr.epoch))
stats = get_training_stats(metrics.get_smoothed_values("train"))
progress.print(stats, tag="train", step=num_updates)
# reset epoch-level meters
metrics.reset_meters("train")
return valid_losses, should_stop
def _flatten_config(cfg: DictConfig):
config = OmegaConf.to_container(cfg)
# remove any legacy Namespaces and replace with a single "args"
namespace = None
for k, v in list(config.items()):
if isinstance(v, argparse.Namespace):
namespace = v
del config[k]
if namespace is not None:
config["args"] = vars(namespace)
return config
def validate_and_save(
cfg: DictConfig,
trainer: Trainer,
task: tasks.FairseqTask,
epoch_itr,
valid_subsets: List[str],
end_of_epoch: bool,
) -> Tuple[List[Optional[float]], bool]:
num_updates = trainer.get_num_updates()
max_update = cfg.optimization.max_update or math.inf
# Stopping conditions (and an additional one based on validation loss later
# on)
should_stop = False
if num_updates >= max_update:
should_stop = True
logger.info(
f"Stopping training due to "
f"num_updates: {num_updates} >= max_update: {max_update}"
)
training_time_hours = trainer.cumulative_training_time() / (60 * 60)
if (
cfg.optimization.stop_time_hours > 0
and training_time_hours > cfg.optimization.stop_time_hours
):
should_stop = True
logger.info(
f"Stopping training due to "
f"cumulative_training_time: {training_time_hours} > "
f"stop_time_hours: {cfg.optimization.stop_time_hours} hour(s)"
)
do_save = (
(end_of_epoch and epoch_itr.epoch % cfg.checkpoint.save_interval == 0)
or should_stop
or (
cfg.checkpoint.save_interval_updates > 0
and num_updates > 0
and num_updates % cfg.checkpoint.save_interval_updates == 0
and num_updates >= cfg.dataset.validate_after_updates
)
)
do_validate = (
(not end_of_epoch and do_save) # validate during mid-epoch saves
or (end_of_epoch and epoch_itr.epoch % cfg.dataset.validate_interval == 0)
or should_stop
or (
cfg.dataset.validate_interval_updates > 0
and num_updates > 0
and num_updates % cfg.dataset.validate_interval_updates == 0
)
) and not cfg.dataset.disable_validation and num_updates >= cfg.dataset.validate_after_updates
# Validate
valid_losses = [None]
if do_validate:
valid_losses = validate(cfg, trainer, task, epoch_itr, valid_subsets)
should_stop |= should_stop_early(cfg, valid_losses[0])
# Save checkpoint
if do_save or should_stop:
checkpoint_utils.save_checkpoint(
cfg.checkpoint, trainer, epoch_itr, valid_losses[0]
)
return valid_losses, should_stop
def get_training_stats(stats: Dict[str, Any]) -> Dict[str, Any]:
stats["wall"] = round(metrics.get_meter("default", "wall").elapsed_time, 0)
return stats
def validate(
cfg: DictConfig,
trainer: Trainer,
task: tasks.FairseqTask,
epoch_itr,
subsets: List[str],
) -> List[Optional[float]]:
"""Evaluate the model on the validation set(s) and return the losses."""
if cfg.dataset.fixed_validation_seed is not None:
# set fixed seed for every validation
utils.set_torch_seed(cfg.dataset.fixed_validation_seed)
trainer.begin_valid_epoch(epoch_itr.epoch)
valid_losses = []
for subset in subsets:
logger.info('begin validation on "{}" subset'.format(subset))
# Initialize data iterator
itr = trainer.get_valid_iterator(subset).next_epoch_itr(
shuffle=False, set_dataset_epoch=False # use a fixed valid set
)
if cfg.common.tpu:
itr = utils.tpu_data_loader(itr)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
epoch=epoch_itr.epoch,
prefix=f"valid on '{subset}' subset",
tensorboard_logdir=(
cfg.common.tensorboard_logdir
if distributed_utils.is_master(cfg.distributed_training)
else None
),
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
wandb_project=(
cfg.common.wandb_project
if distributed_utils.is_master(cfg.distributed_training)
else None
),
wandb_run_name=os.environ.get(
"WANDB_NAME", os.path.basename(cfg.checkpoint.save_dir)
),
)
# create a new root metrics aggregator so validation metrics
# don't pollute other aggregators (e.g., train meters)
with metrics.aggregate(new_root=True) as agg:
for i, sample in enumerate(progress):
if cfg.dataset.max_valid_steps is not None and i > cfg.dataset.max_valid_steps:
break
trainer.valid_step(sample)
# log validation stats
stats = get_valid_stats(cfg, trainer, agg.get_smoothed_values())
if hasattr(task, "post_validate"):
task.post_validate(trainer.get_model(), stats, agg)
progress.print(stats, tag=subset, step=trainer.get_num_updates())
valid_losses.append(stats[cfg.checkpoint.best_checkpoint_metric])
return valid_losses
def get_valid_stats(
cfg: DictConfig, trainer: Trainer, stats: Dict[str, Any]
) -> Dict[str, Any]:
stats["num_updates"] = trainer.get_num_updates()
if hasattr(checkpoint_utils.save_checkpoint, "best"):
key = "best_{0}".format(cfg.checkpoint.best_checkpoint_metric)
best_function = max if cfg.checkpoint.maximize_best_checkpoint_metric else min
stats[key] = best_function(
checkpoint_utils.save_checkpoint.best,
stats[cfg.checkpoint.best_checkpoint_metric],
)
return stats
def cli_main(
modify_parser: Optional[Callable[[argparse.ArgumentParser], None]] = None
) -> None:
parser = options.get_training_parser()
args = options.parse_args_and_arch(parser, modify_parser=modify_parser)
cfg = convert_namespace_to_omegaconf(args)
if cfg.common.use_plasma_view:
server = PlasmaStore(path=cfg.common.plasma_path)
logger.info(f"Started plasma server pid {server.server.pid} {cfg.common.plasma_path}")
if args.profile:
with torch.cuda.profiler.profile():
with torch.autograd.profiler.emit_nvtx():
distributed_utils.call_main(cfg, main)
else:
distributed_utils.call_main(cfg, main)
# if cfg.common.use_plasma_view:
# server.server.kill()
if __name__ == "__main__":
cli_main()