HuBERT / examples /bart /summarize.py
aliabd
full working demo
d5175d3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq.models.bart import BARTModel
import argparse
XSUM_KWARGS = dict(beam=6, lenpen=1.0, max_len_b=60, min_len=10, no_repeat_ngram_size=3)
CNN_KWARGS = dict(beam=4, lenpen=2.0, max_len_b=140, min_len=55, no_repeat_ngram_size=3)
@torch.no_grad()
def generate(bart, infile, outfile="bart_hypo.txt", bsz=32, n_obs=None, **eval_kwargs):
count = 1
# if n_obs is not None: bsz = min(bsz, n_obs)
with open(infile) as source, open(outfile, "w") as fout:
sline = source.readline().strip()
slines = [sline]
for sline in source:
if n_obs is not None and count > n_obs:
break
if count % bsz == 0:
hypotheses_batch = bart.sample(slines, **eval_kwargs)
for hypothesis in hypotheses_batch:
fout.write(hypothesis + "\n")
fout.flush()
slines = []
slines.append(sline.strip())
count += 1
if slines != []:
hypotheses_batch = bart.sample(slines, **eval_kwargs)
for hypothesis in hypotheses_batch:
fout.write(hypothesis + "\n")
fout.flush()
def main():
"""
Usage::
python examples/bart/summarize.py \
--model-dir $HOME/bart.large.cnn \
--model-file model.pt \
--src $HOME/data-bin/cnn_dm/test.source
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-dir",
required=True,
type=str,
default="bart.large.cnn/",
help="path containing model file and src_dict.txt",
)
parser.add_argument(
"--model-file",
default="checkpoint_best.pt",
help="where in model_dir are weights saved",
)
parser.add_argument(
"--src", default="test.source", help="text to summarize", type=str
)
parser.add_argument(
"--out", default="test.hypo", help="where to save summaries", type=str
)
parser.add_argument("--bsz", default=32, help="where to save summaries", type=int)
parser.add_argument(
"--n", default=None, help="how many examples to summarize", type=int
)
parser.add_argument(
"--xsum-kwargs",
action="store_true",
default=False,
help="if true use XSUM_KWARGS else CNN_KWARGS",
)
args = parser.parse_args()
eval_kwargs = XSUM_KWARGS if args.xsum_kwargs else CNN_KWARGS
if args.model_dir == "pytorch/fairseq":
bart = torch.hub.load("pytorch/fairseq", args.model_file)
else:
bart = BARTModel.from_pretrained(
args.model_dir,
checkpoint_file=args.model_file,
data_name_or_path=args.model_dir,
)
bart = bart.eval()
if torch.cuda.is_available():
bart = bart.cuda().half()
generate(
bart, args.src, bsz=args.bsz, n_obs=args.n, outfile=args.out, **eval_kwargs
)
if __name__ == "__main__":
main()