|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
|
|
import torch.nn.functional as F |
|
from fairseq import metrics, utils |
|
from fairseq.criterions import register_criterion |
|
from fairseq.criterions.cross_entropy import CrossEntropyCriterion |
|
from fairseq.dataclass import FairseqDataclass |
|
from omegaconf import II |
|
|
|
|
|
@dataclass |
|
class AdaptiveSpanCriterionConfig(FairseqDataclass): |
|
sentence_avg: bool = II("optimization.sentence_avg") |
|
|
|
|
|
@register_criterion("adaptive_span_loss", dataclass=AdaptiveSpanCriterionConfig) |
|
class AdaptiveSpanCriterion(CrossEntropyCriterion): |
|
def __init__(self, task, sentence_avg): |
|
super().__init__(task, sentence_avg) |
|
|
|
def forward(self, model, sample, reduce=True): |
|
"""Compute the loss for the given sample. |
|
|
|
Returns a tuple with three elements: |
|
1) the loss here is summed, different from the adaptive span code |
|
2) the sample size, which is used as the denominator for the gradient |
|
3) logging outputs to display while training |
|
""" |
|
net_output = model(**sample["net_input"]) |
|
loss, aux_loss, avg_span, max_span = self.compute_loss( |
|
model, net_output, sample, reduce=reduce |
|
) |
|
sample_size = ( |
|
sample["target"].size(0) if self.sentence_avg else sample["ntokens"] |
|
) |
|
loss /= sample_size |
|
total_loss = loss + aux_loss |
|
sample_size = 1 |
|
|
|
logging_output = { |
|
"loss": loss.data, |
|
"ntokens": sample["ntokens"], |
|
"nsentences": sample["target"].size(0), |
|
"sample_size": sample_size, |
|
"total_loss": total_loss.data, |
|
"avg_span": avg_span * sample_size, |
|
"max_span": max_span * sample_size, |
|
} |
|
return total_loss, sample_size, logging_output |
|
|
|
def compute_loss(self, model, net_output, sample, reduce=True): |
|
loss, _ = super().compute_loss(model, net_output, sample, reduce) |
|
aux_loss = model.get_aux_loss() |
|
avg_span = model.get_current_avg_span() |
|
max_span = model.get_current_max_span() |
|
return loss, aux_loss, avg_span, max_span |
|
|
|
@staticmethod |
|
def reduce_metrics(logging_outputs) -> None: |
|
"""Aggregate logging outputs from data parallel training.""" |
|
loss_sum = sum(log.get("loss", 0) for log in logging_outputs) |
|
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) |
|
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) |
|
total_loss_sum = sum(log.get("total_loss", 0) for log in logging_outputs) |
|
avg_span_sum = sum(log.get("avg_span", 0) for log in logging_outputs) |
|
max_span_sum = sum(log.get("max_span", 0) for log in logging_outputs) |
|
|
|
|
|
metrics.log_scalar( |
|
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3 |
|
) |
|
metrics.log_scalar("avg_span", avg_span_sum / sample_size, sample_size, round=3) |
|
metrics.log_scalar("max_span", max_span_sum / sample_size, sample_size, round=3) |
|
|
|
metrics.log_scalar( |
|
"total_loss", |
|
total_loss_sum / sample_size / math.log(2), |
|
sample_size, |
|
round=3, |
|
) |
|
if sample_size != ntokens: |
|
metrics.log_scalar( |
|
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 |
|
) |
|
metrics.log_derived( |
|
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) |
|
) |
|
else: |
|
metrics.log_derived( |
|
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) |
|
) |
|
|
|
@staticmethod |
|
def logging_outputs_can_be_summed() -> bool: |
|
""" |
|
Whether the logging outputs returned by `forward` can be summed |
|
across workers prior to calling `reduce_metrics`. Setting this |
|
to True will improves distributed training speed. |
|
""" |
|
return True |
|
|