File size: 41,200 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, Optional
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor
from .noisy_channel_beam_search import NoisyChannelBeamSearch
from fairseq.sequence_generator import EnsembleModel
class NoisyChannelSequenceGenerator(object):
def __init__(
self,
combine_method,
tgt_dict,
src_dict=None,
beam_size=1,
max_len_a=0,
max_len_b=200,
min_len=1,
len_penalty=1.0,
unk_penalty=0.0,
retain_dropout=False,
temperature=1.0,
match_source_len=False,
no_repeat_ngram_size=0,
normalize_scores=True,
channel_models=None,
k2=10,
ch_weight=1.0,
channel_scoring_type='log_norm',
top_k_vocab=0,
lm_models=None,
lm_dict=None,
lm_weight=1.0,
normalize_lm_scores_by_tgt_len=False,
):
"""Generates translations of a given source sentence,
using beam search with noisy channel decoding.
Args:
combine_method (string, optional): Method to combine direct, LM and
channel model scores (default: None)
tgt_dict (~fairseq.data.Dictionary): target dictionary
src_dict (~fairseq.data.Dictionary): source dictionary
beam_size (int, optional): beam width (default: 1)
max_len_a/b (int, optional): generate sequences of maximum length
ax + b, where x is the source length
min_len (int, optional): the minimum length of the generated output
(not including end-of-sentence)
len_penalty (float, optional): length penalty, where <1.0 favors
shorter, >1.0 favors longer sentences (default: 1.0)
unk_penalty (float, optional): unknown word penalty, where <0
produces more unks, >0 produces fewer (default: 0.0)
retain_dropout (bool, optional): use dropout when generating
(default: False)
temperature (float, optional): temperature, where values
>1.0 produce more uniform samples and values <1.0 produce
sharper samples (default: 1.0)
match_source_len (bool, optional): outputs should match the source
length (default: False)
no_repeat_ngram_size (int, optional): Size of n-grams that we avoid
repeating in the generation (default: 0)
normalize_scores (bool, optional): normalize scores by the length
of the output (default: True)
channel_models (List[~fairseq.models.FairseqModel]): ensemble of models
translating from the target to the source
k2 (int, optional): Top K2 candidates to score per beam at each step (default:10)
ch_weight (int, optional): Weight associated with the channel model score
assuming that the direct model score has weight 1.0 (default: 1.0)
channel_scoring_type (str, optional): String specifying how to score
the channel model (default: 'log_norm')
top_k_vocab (int, optional): If `channel_scoring_type` is `'src_vocab'` or
`'src_vocab_batched'`, then this parameter specifies the number of
most frequent tokens to include in the channel model output vocabulary,
in addition to the source tokens in the input batch (default: 0)
lm_models (List[~fairseq.models.FairseqModel]): ensemble of models
generating text in the target language
lm_dict (~fairseq.data.Dictionary): LM Model dictionary
lm_weight (int, optional): Weight associated with the LM model score
assuming that the direct model score has weight 1.0 (default: 1.0)
normalize_lm_scores_by_tgt_len (bool, optional): Should we normalize LM scores
by the target length? By default, we normalize the combination of
LM and channel model scores by the source length
"""
self.pad = tgt_dict.pad()
self.unk = tgt_dict.unk()
self.eos = tgt_dict.eos()
self.vocab_size = len(tgt_dict)
self.beam_size = beam_size
# the max beam size is the dictionary size - 1, since we never select pad
self.beam_size = min(beam_size, self.vocab_size - 1)
self.max_len_a = max_len_a
self.max_len_b = max_len_b
self.min_len = min_len
self.normalize_scores = normalize_scores
self.len_penalty = len_penalty
self.unk_penalty = unk_penalty
self.retain_dropout = retain_dropout
self.temperature = temperature
self.match_source_len = match_source_len
self.no_repeat_ngram_size = no_repeat_ngram_size
self.channel_models = channel_models
self.src_dict = src_dict
self.tgt_dict = tgt_dict
self.combine_method = combine_method
self.k2 = k2
self.ch_weight = ch_weight
self.channel_scoring_type = channel_scoring_type
self.top_k_vocab = top_k_vocab
self.lm_models = lm_models
self.lm_dict = lm_dict
self.lm_weight = lm_weight
self.log_softmax_fn = torch.nn.LogSoftmax(dim=1)
self.normalize_lm_scores_by_tgt_len = normalize_lm_scores_by_tgt_len
self.share_tgt_dict = (self.lm_dict == self.tgt_dict)
self.tgt_to_lm = make_dict2dict(tgt_dict, lm_dict)
self.ch_scoring_bsz = 3072
assert temperature > 0, '--temperature must be greater than 0'
self.search = NoisyChannelBeamSearch(tgt_dict)
@torch.no_grad()
def generate(
self,
models,
sample,
prefix_tokens=None,
bos_token=None,
**kwargs
):
"""Generate a batch of translations.
Args:
models (List[~fairseq.models.FairseqModel]): ensemble of models
sample (dict): batch
prefix_tokens (torch.LongTensor, optional): force decoder to begin
with these tokens
"""
model = EnsembleModel(models)
incremental_states = torch.jit.annotate(
List[Dict[str, Dict[str, Optional[Tensor]]]],
[
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
for i in range(model.models_size)
],
)
if not self.retain_dropout:
model.eval()
# model.forward normally channels prev_output_tokens into the decoder
# separately, but SequenceGenerator directly calls model.encoder
encoder_input = {
k: v for k, v in sample['net_input'].items()
if k != 'prev_output_tokens'
}
src_tokens = encoder_input['src_tokens']
src_lengths_no_eos = (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1)
input_size = src_tokens.size()
# batch dimension goes first followed by source lengths
bsz = input_size[0]
src_len = input_size[1]
beam_size = self.beam_size
if self.match_source_len:
max_len = src_lengths_no_eos.max().item()
else:
max_len = min(
int(self.max_len_a * src_len + self.max_len_b),
# exclude the EOS marker
model.max_decoder_positions() - 1,
)
# compute the encoder output for each beam
encoder_outs = model.forward_encoder(encoder_input)
new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1)
new_order = new_order.to(src_tokens.device).long()
encoder_outs = model.reorder_encoder_out(encoder_outs, new_order)
src_lengths = encoder_input['src_lengths']
# initialize buffers
scores = src_tokens.new(bsz * beam_size, max_len + 1).float().fill_(0)
lm_prefix_scores = src_tokens.new(bsz * beam_size).float().fill_(0)
scores_buf = scores.clone()
tokens = src_tokens.new(bsz * beam_size, max_len + 2).long().fill_(self.pad)
tokens_buf = tokens.clone()
tokens[:, 0] = self.eos if bos_token is None else bos_token
# reorder source tokens so they may be used as a reference in generating P(S|T)
src_tokens = reorder_all_tokens(src_tokens, src_lengths, self.src_dict.eos_index)
src_tokens = src_tokens.repeat(1, beam_size).view(-1, src_len)
src_lengths = src_lengths.view(bsz, -1).repeat(1, beam_size).view(bsz*beam_size, -1)
attn, attn_buf = None, None
nonpad_idxs = None
# The cands_to_ignore indicates candidates that should be ignored.
# For example, suppose we're sampling and have already finalized 2/5
# samples. Then the cands_to_ignore would mark 2 positions as being ignored,
# so that we only finalize the remaining 3 samples.
cands_to_ignore = src_tokens.new_zeros(bsz, beam_size).eq(-1) # forward and backward-compatible False mask
# list of completed sentences
finalized = [[] for i in range(bsz)]
finished = [False for i in range(bsz)]
num_remaining_sent = bsz
# number of candidate hypos per step
cand_size = 2 * beam_size # 2 x beam size in case half are EOS
# offset arrays for converting between different indexing schemes
bbsz_offsets = (torch.arange(0, bsz) * beam_size).unsqueeze(1).type_as(tokens)
cand_offsets = torch.arange(0, cand_size).type_as(tokens)
# helper function for allocating buffers on the fly
buffers = {}
def buffer(name, type_of=tokens): # noqa
if name not in buffers:
buffers[name] = type_of.new()
return buffers[name]
def is_finished(sent, step, unfin_idx):
"""
Check whether we've finished generation for a given sentence, by
comparing the worst score among finalized hypotheses to the best
possible score among unfinalized hypotheses.
"""
assert len(finalized[sent]) <= beam_size
if len(finalized[sent]) == beam_size:
return True
return False
def finalize_hypos(step, bbsz_idx, eos_scores, combined_noisy_channel_eos_scores):
"""
Finalize the given hypotheses at this step, while keeping the total
number of finalized hypotheses per sentence <= beam_size.
Note: the input must be in the desired finalization order, so that
hypotheses that appear earlier in the input are preferred to those
that appear later.
Args:
step: current time step
bbsz_idx: A vector of indices in the range [0, bsz*beam_size),
indicating which hypotheses to finalize
eos_scores: A vector of the same size as bbsz_idx containing
fw scores for each hypothesis
combined_noisy_channel_eos_scores: A vector of the same size as bbsz_idx containing
combined noisy channel scores for each hypothesis
"""
assert bbsz_idx.numel() == eos_scores.numel()
# clone relevant token and attention tensors
tokens_clone = tokens.index_select(0, bbsz_idx)
tokens_clone = tokens_clone[:, 1:step + 2] # skip the first index, which is EOS
assert not tokens_clone.eq(self.eos).any()
tokens_clone[:, step] = self.eos
attn_clone = attn.index_select(0, bbsz_idx)[:, :, 1:step+2] if attn is not None else None
# compute scores per token position
pos_scores = scores.index_select(0, bbsz_idx)[:, :step+1]
pos_scores[:, step] = eos_scores
# convert from cumulative to per-position scores
pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1]
# normalize sentence-level scores
if self.normalize_scores:
combined_noisy_channel_eos_scores /= (step + 1) ** self.len_penalty
cum_unfin = []
prev = 0
for f in finished:
if f:
prev += 1
else:
cum_unfin.append(prev)
sents_seen = set()
for i, (idx, score) in enumerate(zip(bbsz_idx.tolist(), combined_noisy_channel_eos_scores.tolist())):
unfin_idx = idx // beam_size
sent = unfin_idx + cum_unfin[unfin_idx]
sents_seen.add((sent, unfin_idx))
if self.match_source_len and step > src_lengths_no_eos[unfin_idx]:
score = -math.inf
def get_hypo():
if attn_clone is not None:
# remove padding tokens from attn scores
hypo_attn = attn_clone[i][nonpad_idxs[sent]]
_, alignment = hypo_attn.max(dim=0)
else:
hypo_attn = None
alignment = None
return {
'tokens': tokens_clone[i],
'score': score,
'attention': hypo_attn, # src_len x tgt_len
'alignment': alignment,
'positional_scores': pos_scores[i],
}
if len(finalized[sent]) < beam_size:
finalized[sent].append(get_hypo())
newly_finished = []
for sent, unfin_idx in sents_seen:
# check termination conditions for this sentence
if not finished[sent] and is_finished(sent, step, unfin_idx):
finished[sent] = True
newly_finished.append(unfin_idx)
return newly_finished
def noisy_channel_rescoring(lprobs, beam_size, bsz, src_tokens, tokens, k):
"""Rescore the top k hypothesis from each beam using noisy channel modeling
Returns:
new_fw_lprobs: the direct model probabilities after pruning the top k
new_ch_lm_lprobs: the combined channel and language model probabilities
new_lm_lprobs: the language model probabilities after pruning the top k
"""
with torch.no_grad():
lprobs_size = lprobs.size()
if prefix_tokens is not None and step < prefix_tokens.size(1):
probs_slice = lprobs.view(bsz, -1, lprobs.size(-1))[:, 0, :]
cand_scores = torch.gather(
probs_slice, dim=1,
index=prefix_tokens[:, step].view(-1, 1).data
).expand(-1, beam_size).contiguous().view(bsz*beam_size, 1)
cand_indices = prefix_tokens[:, step].view(-1, 1).expand(bsz, beam_size).data.contiguous().view(bsz*beam_size, 1)
# need to calculate and save fw and lm probs for prefix tokens
fw_top_k = cand_scores
fw_top_k_idx = cand_indices
k = 1
else:
# take the top k best words for every sentence in batch*beam
fw_top_k, fw_top_k_idx = torch.topk(lprobs.view(beam_size*bsz, -1), k=k)
eos_idx = torch.nonzero(fw_top_k_idx.view(bsz*beam_size*k, -1) == self.eos)[:, 0]
ch_scores = fw_top_k.new_full((beam_size*bsz*k, ), 0)
src_size = torch.sum(src_tokens[:, :] != self.src_dict.pad_index, dim=1, keepdim=True, dtype=fw_top_k.dtype)
if self.combine_method != "lm_only":
temp_src_tokens_full = src_tokens[:, :].repeat(1, k).view(bsz*beam_size*k, -1)
not_padding = temp_src_tokens_full[:, 1:] != self.src_dict.pad_index
cur_tgt_size = step+2
# add eos to all candidate sentences except those that already end in eos
eos_tokens = tokens[:, 0].repeat(1, k).view(-1, 1)
eos_tokens[eos_idx] = self.tgt_dict.pad_index
if step == 0:
channel_input = torch.cat((fw_top_k_idx.view(-1, 1), eos_tokens), 1)
else:
# move eos from beginning to end of target sentence
channel_input = torch.cat((tokens[:, 1:step + 1].repeat(1, k).view(-1, step), fw_top_k_idx.view(-1, 1), eos_tokens), 1)
ch_input_lengths = torch.tensor(np.full(channel_input.size(0), cur_tgt_size))
ch_input_lengths[eos_idx] = cur_tgt_size-1
if self.channel_scoring_type == "unnormalized":
ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths)
ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True)
del ch_encoder_output
ch_intermed_scores = channel_model.decoder.unnormalized_scores_given_target(ch_decoder_output, target_ids=temp_src_tokens_full[:, 1:])
ch_intermed_scores = ch_intermed_scores.float()
ch_intermed_scores *= not_padding.float()
ch_scores = torch.sum(ch_intermed_scores, dim=1)
elif self.channel_scoring_type == "k2_separate":
for k_idx in range(k):
k_eos_tokens = eos_tokens[k_idx::k, :]
if step == 0:
k_ch_input = torch.cat((fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1)
else:
# move eos from beginning to end of target sentence
k_ch_input = torch.cat((tokens[:, 1:step + 1], fw_top_k_idx[:, k_idx:k_idx+1], k_eos_tokens), 1)
k_ch_input_lengths = ch_input_lengths[k_idx::k]
k_ch_output = channel_model(k_ch_input, k_ch_input_lengths, src_tokens)
k_ch_lprobs = channel_model.get_normalized_probs(k_ch_output, log_probs=True)
k_ch_intermed_scores = torch.gather(k_ch_lprobs[:, :-1, :], 2, src_tokens[:, 1:].unsqueeze(2)).squeeze(2)
k_ch_intermed_scores *= not_padding.float()
ch_scores[k_idx::k] = torch.sum(k_ch_intermed_scores, dim=1)
elif self.channel_scoring_type == "src_vocab":
ch_encoder_output = channel_model.encoder(channel_input, src_lengths=ch_input_lengths)
ch_decoder_output, _ = channel_model.decoder(temp_src_tokens_full, encoder_out=ch_encoder_output, features_only=True)
del ch_encoder_output
ch_lprobs = normalized_scores_with_batch_vocab(
channel_model.decoder,
ch_decoder_output, src_tokens, k, bsz, beam_size,
self.src_dict.pad_index, top_k=self.top_k_vocab)
ch_scores = torch.sum(ch_lprobs, dim=1)
elif self.channel_scoring_type == "src_vocab_batched":
ch_bsz_size = temp_src_tokens_full.shape[0]
ch_lprobs_list = [None] * len(range(0, ch_bsz_size, self.ch_scoring_bsz))
for i, start_idx in enumerate(range(0, ch_bsz_size, self.ch_scoring_bsz)):
end_idx = min(start_idx + self.ch_scoring_bsz, ch_bsz_size)
temp_src_tokens_full_batch = temp_src_tokens_full[start_idx:end_idx, :]
channel_input_batch = channel_input[start_idx:end_idx, :]
ch_input_lengths_batch = ch_input_lengths[start_idx:end_idx]
ch_encoder_output_batch = channel_model.encoder(channel_input_batch, src_lengths=ch_input_lengths_batch)
ch_decoder_output_batch, _ = channel_model.decoder(temp_src_tokens_full_batch, encoder_out=ch_encoder_output_batch, features_only=True)
ch_lprobs_list[i] = normalized_scores_with_batch_vocab(
channel_model.decoder,
ch_decoder_output_batch, src_tokens, k, bsz, beam_size,
self.src_dict.pad_index, top_k=self.top_k_vocab,
start_idx=start_idx, end_idx=end_idx)
ch_lprobs = torch.cat(ch_lprobs_list, dim=0)
ch_scores = torch.sum(ch_lprobs, dim=1)
else:
ch_output = channel_model(channel_input, ch_input_lengths, temp_src_tokens_full)
ch_lprobs = channel_model.get_normalized_probs(ch_output, log_probs=True)
ch_intermed_scores = torch.gather(ch_lprobs[:, :-1, :], 2, temp_src_tokens_full[:, 1:].unsqueeze(2)).squeeze().view(bsz*beam_size*k, -1)
ch_intermed_scores *= not_padding.float()
ch_scores = torch.sum(ch_intermed_scores, dim=1)
else:
cur_tgt_size = 0
ch_scores = ch_scores.view(bsz*beam_size, k)
expanded_lm_prefix_scores = lm_prefix_scores.unsqueeze(1).expand(-1, k).flatten()
if self.share_tgt_dict:
lm_scores = get_lm_scores(lm, tokens[:, :step + 1].view(-1, step+1), lm_incremental_states, fw_top_k_idx.view(-1, 1), torch.tensor(np.full(tokens.size(0), step+1)), k)
else:
new_lm_input = dict2dict(tokens[:, :step + 1].view(-1, step+1), self.tgt_to_lm)
new_cands = dict2dict(fw_top_k_idx.view(-1, 1), self.tgt_to_lm)
lm_scores = get_lm_scores(lm, new_lm_input, lm_incremental_states, new_cands, torch.tensor(np.full(tokens.size(0), step+1)), k)
lm_scores.add_(expanded_lm_prefix_scores)
ch_lm_scores = combine_ch_lm(self.combine_method, ch_scores, lm_scores, src_size, cur_tgt_size)
# initialize all as min value
new_fw_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
new_ch_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
new_lm_lprobs = ch_scores.new(lprobs_size).fill_(-1e17).view(bsz*beam_size, -1)
new_fw_lprobs[:, self.pad] = -math.inf
new_ch_lm_lprobs[:, self.pad] = -math.inf
new_lm_lprobs[:, self.pad] = -math.inf
new_fw_lprobs.scatter_(1, fw_top_k_idx, fw_top_k)
new_ch_lm_lprobs.scatter_(1, fw_top_k_idx, ch_lm_scores)
new_lm_lprobs.scatter_(1, fw_top_k_idx, lm_scores.view(-1, k))
return new_fw_lprobs, new_ch_lm_lprobs, new_lm_lprobs
def combine_ch_lm(combine_type, ch_scores, lm_scores1, src_size, tgt_size):
if self.channel_scoring_type == "unnormalized":
ch_scores = self.log_softmax_fn(
ch_scores.view(-1, self.beam_size * self.k2)
).view(ch_scores.shape)
ch_scores = ch_scores * self.ch_weight
lm_scores1 = lm_scores1 * self.lm_weight
if combine_type == "lm_only":
# log P(T|S) + log P(T)
ch_scores = lm_scores1.view(ch_scores.size())
elif combine_type == "noisy_channel":
# 1/t log P(T|S) + 1/s log P(S|T) + 1/t log P(T)
if self.normalize_lm_scores_by_tgt_len:
ch_scores.div_(src_size)
lm_scores_norm = lm_scores1.view(ch_scores.size()).div(tgt_size)
ch_scores.add_(lm_scores_norm)
# 1/t log P(T|S) + 1/s log P(S|T) + 1/s log P(T)
else:
ch_scores.add_(lm_scores1.view(ch_scores.size()))
ch_scores.div_(src_size)
return ch_scores
if self.channel_models is not None:
channel_model = self.channel_models[0] # assume only one channel_model model
else:
channel_model = None
lm = EnsembleModel(self.lm_models)
lm_incremental_states = torch.jit.annotate(
List[Dict[str, Dict[str, Optional[Tensor]]]],
[
torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {})
for i in range(lm.models_size)
],
)
reorder_state = None
batch_idxs = None
for step in range(max_len + 1): # one extra step for EOS marker
# reorder decoder internal states based on the prev choice of beams
if reorder_state is not None:
if batch_idxs is not None:
# update beam indices to take into account removed sentences
corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as(batch_idxs)
reorder_state.view(-1, beam_size).add_(corr.unsqueeze(-1) * beam_size)
model.reorder_incremental_state(incremental_states, reorder_state)
encoder_outs = model.reorder_encoder_out(encoder_outs, reorder_state)
lm.reorder_incremental_state(lm_incremental_states, reorder_state)
fw_lprobs, avg_attn_scores = model.forward_decoder(
tokens[:, :step + 1], encoder_outs, incremental_states, temperature=self.temperature,
)
fw_lprobs[:, self.pad] = -math.inf # never select pad
fw_lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty
fw_lprobs, ch_lm_lprobs, lm_lprobs = noisy_channel_rescoring(fw_lprobs, beam_size, bsz, src_tokens, tokens, self.k2)
# handle min and max length constraints
if step >= max_len:
fw_lprobs[:, :self.eos] = -math.inf
fw_lprobs[:, self.eos + 1:] = -math.inf
elif step < self.min_len:
fw_lprobs[:, self.eos] = -math.inf
# handle prefix tokens (possibly with different lengths)
if prefix_tokens is not None and step < prefix_tokens.size(1):
prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1)
prefix_mask = prefix_toks.ne(self.pad)
prefix_fw_lprobs = fw_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
fw_lprobs[prefix_mask] = -math.inf
fw_lprobs[prefix_mask] = fw_lprobs[prefix_mask].scatter_(
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_fw_lprobs
)
prefix_ch_lm_lprobs = ch_lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
ch_lm_lprobs[prefix_mask] = -math.inf
ch_lm_lprobs[prefix_mask] = ch_lm_lprobs[prefix_mask].scatter_(
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_ch_lm_lprobs
)
prefix_lm_lprobs = lm_lprobs.gather(-1, prefix_toks.unsqueeze(-1))
lm_lprobs[prefix_mask] = -math.inf
lm_lprobs[prefix_mask] = lm_lprobs[prefix_mask].scatter_(
-1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lm_lprobs
)
# if prefix includes eos, then we should make sure tokens and
# scores are the same across all beams
eos_mask = prefix_toks.eq(self.eos)
if eos_mask.any():
# validate that the first beam matches the prefix
first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[:, 0, 1:step + 1]
eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0]
target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step]
assert (first_beam == target_prefix).all()
def replicate_first_beam(tensor, mask):
tensor = tensor.view(-1, beam_size, tensor.size(-1))
tensor[mask] = tensor[mask][:, :1, :]
return tensor.view(-1, tensor.size(-1))
# copy tokens, scores and lprobs from the first beam to all beams
tokens = replicate_first_beam(tokens, eos_mask_batch_dim)
scores = replicate_first_beam(scores, eos_mask_batch_dim)
fw_lprobs = replicate_first_beam(fw_lprobs, eos_mask_batch_dim)
ch_lm_lprobs = replicate_first_beam(ch_lm_lprobs, eos_mask_batch_dim)
lm_lprobs = replicate_first_beam(lm_lprobs, eos_mask_batch_dim)
if self.no_repeat_ngram_size > 0:
# for each beam and batch sentence, generate a list of previous ngrams
gen_ngrams = [{} for bbsz_idx in range(bsz * beam_size)]
for bbsz_idx in range(bsz * beam_size):
gen_tokens = tokens[bbsz_idx].tolist()
for ngram in zip(*[gen_tokens[i:] for i in range(self.no_repeat_ngram_size)]):
gen_ngrams[bbsz_idx][tuple(ngram[:-1])] = \
gen_ngrams[bbsz_idx].get(tuple(ngram[:-1]), []) + [ngram[-1]]
# Record attention scores
if avg_attn_scores is not None:
if attn is None:
attn = scores.new(bsz * beam_size, src_tokens.size(1), max_len + 2)
attn_buf = attn.clone()
nonpad_idxs = src_tokens.ne(self.pad)
attn[:, :, step + 1].copy_(avg_attn_scores)
scores = scores.type_as(fw_lprobs)
scores_buf = scores_buf.type_as(fw_lprobs)
self.search.set_src_lengths(src_lengths_no_eos)
if self.no_repeat_ngram_size > 0:
def calculate_banned_tokens(bbsz_idx):
# before decoding the next token, prevent decoding of ngrams that have already appeared
ngram_index = tuple(tokens[bbsz_idx, step + 2 - self.no_repeat_ngram_size:step + 1].tolist())
return gen_ngrams[bbsz_idx].get(ngram_index, [])
if step + 2 - self.no_repeat_ngram_size >= 0:
# no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
banned_tokens = [calculate_banned_tokens(bbsz_idx) for bbsz_idx in range(bsz * beam_size)]
else:
banned_tokens = [[] for bbsz_idx in range(bsz * beam_size)]
for bbsz_idx in range(bsz * beam_size):
fw_lprobs[bbsz_idx, banned_tokens[bbsz_idx]] = -math.inf
combined_noisy_channel_scores, fw_lprobs_top_k, lm_lprobs_top_k, cand_indices, cand_beams = self.search.step(
step,
fw_lprobs.view(bsz, -1, self.vocab_size),
scores.view(bsz, beam_size, -1)[:, :, :step], ch_lm_lprobs.view(bsz, -1, self.vocab_size),
lm_lprobs.view(bsz, -1, self.vocab_size), self.combine_method
)
# cand_bbsz_idx contains beam indices for the top candidate
# hypotheses, with a range of values: [0, bsz*beam_size),
# and dimensions: [bsz, cand_size]
cand_bbsz_idx = cand_beams.add(bbsz_offsets)
# finalize hypotheses that end in eos (except for candidates to be ignored)
eos_mask = cand_indices.eq(self.eos)
eos_mask[:, :beam_size] &= ~cands_to_ignore
# only consider eos when it's among the top beam_size indices
eos_bbsz_idx = torch.masked_select(
cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size]
)
finalized_sents = set()
if eos_bbsz_idx.numel() > 0:
eos_scores = torch.masked_select(
fw_lprobs_top_k[:, :beam_size], mask=eos_mask[:, :beam_size]
)
combined_noisy_channel_eos_scores = torch.masked_select(
combined_noisy_channel_scores[:, :beam_size],
mask=eos_mask[:, :beam_size],
)
# finalize hypo using channel model score
finalized_sents = finalize_hypos(
step, eos_bbsz_idx, eos_scores, combined_noisy_channel_eos_scores)
num_remaining_sent -= len(finalized_sents)
assert num_remaining_sent >= 0
if num_remaining_sent == 0:
break
if len(finalized_sents) > 0:
new_bsz = bsz - len(finalized_sents)
# construct batch_idxs which holds indices of batches to keep for the next pass
batch_mask = cand_indices.new_ones(bsz)
batch_mask[cand_indices.new(finalized_sents)] = 0
batch_idxs = torch.nonzero(batch_mask).squeeze(-1)
eos_mask = eos_mask[batch_idxs]
cand_beams = cand_beams[batch_idxs]
bbsz_offsets.resize_(new_bsz, 1)
cand_bbsz_idx = cand_beams.add(bbsz_offsets)
lm_lprobs_top_k = lm_lprobs_top_k[batch_idxs]
fw_lprobs_top_k = fw_lprobs_top_k[batch_idxs]
cand_indices = cand_indices[batch_idxs]
if prefix_tokens is not None:
prefix_tokens = prefix_tokens[batch_idxs]
src_lengths_no_eos = src_lengths_no_eos[batch_idxs]
cands_to_ignore = cands_to_ignore[batch_idxs]
scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
scores_buf.resize_as_(scores)
tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
tokens_buf.resize_as_(tokens)
src_tokens = src_tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
src_lengths = src_lengths.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1)
lm_prefix_scores = lm_prefix_scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1).squeeze()
if attn is not None:
attn = attn.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, attn.size(1), -1)
attn_buf.resize_as_(attn)
bsz = new_bsz
else:
batch_idxs = None
# Set active_mask so that values > cand_size indicate eos or
# ignored hypos and values < cand_size indicate candidate
# active hypos. After this, the min values per row are the top
# candidate active hypos.
eos_mask[:, :beam_size] |= cands_to_ignore
active_mask = torch.add(
eos_mask.type_as(cand_offsets) * cand_size,
cand_offsets[: eos_mask.size(1)],
)
# get the top beam_size active hypotheses, which are just the hypos
# with the smallest values in active_mask
active_hypos, new_cands_to_ignore = buffer('active_hypos'), buffer('new_cands_to_ignore')
torch.topk(
active_mask, k=beam_size, dim=1, largest=False,
out=(new_cands_to_ignore, active_hypos)
)
# update cands_to_ignore to ignore any finalized hypos
cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size]
assert (~cands_to_ignore).any(dim=1).all()
active_bbsz_idx = buffer('active_bbsz_idx')
torch.gather(
cand_bbsz_idx, dim=1, index=active_hypos,
out=active_bbsz_idx,
)
active_scores = torch.gather(
fw_lprobs_top_k, dim=1, index=active_hypos,
out=scores[:, step].view(bsz, beam_size),
)
active_bbsz_idx = active_bbsz_idx.view(-1)
active_scores = active_scores.view(-1)
# copy tokens and scores for active hypotheses
torch.index_select(
tokens[:, :step + 1], dim=0, index=active_bbsz_idx,
out=tokens_buf[:, :step + 1],
)
torch.gather(
cand_indices, dim=1, index=active_hypos,
out=tokens_buf.view(bsz, beam_size, -1)[:, :, step + 1],
)
if step > 0:
torch.index_select(
scores[:, :step], dim=0, index=active_bbsz_idx,
out=scores_buf[:, :step],
)
torch.gather(
fw_lprobs_top_k, dim=1, index=active_hypos,
out=scores_buf.view(bsz, beam_size, -1)[:, :, step],
)
torch.gather(
lm_lprobs_top_k, dim=1, index=active_hypos,
out=lm_prefix_scores.view(bsz, beam_size)
)
# copy attention for active hypotheses
if attn is not None:
torch.index_select(
attn[:, :, :step + 2], dim=0, index=active_bbsz_idx,
out=attn_buf[:, :, :step + 2],
)
# swap buffers
tokens, tokens_buf = tokens_buf, tokens
scores, scores_buf = scores_buf, scores
if attn is not None:
attn, attn_buf = attn_buf, attn
# reorder incremental state in decoder
reorder_state = active_bbsz_idx
# sort by score descending
for sent in range(len(finalized)):
finalized[sent] = sorted(finalized[sent], key=lambda r: r['score'], reverse=True)
return finalized
def get_lm_scores(model, input_tokens, incremental_states, cand_tokens, input_len, k):
with torch.no_grad():
lm_lprobs, avg_attn_scores = model.forward_decoder(
input_tokens, encoder_outs=None, incremental_states=incremental_states,
)
lm_lprobs_size = lm_lprobs.size(0)
probs_next_wrd = torch.gather(lm_lprobs.repeat(1, k).view(lm_lprobs_size*k, -1), 1, cand_tokens).squeeze().view(-1)
return probs_next_wrd
def make_dict2dict(old_dict, new_dict):
dict2dict_map = {}
for sym in old_dict.symbols:
dict2dict_map[old_dict.index(sym)] = new_dict.index(sym)
return dict2dict_map
def dict2dict(tokens, dict2dict_map):
if tokens.device == torch.device('cpu'):
tokens_tmp = tokens
else:
tokens_tmp = tokens.cpu()
return tokens_tmp.map_(
tokens_tmp,
lambda _, val, dict2dict_map=dict2dict_map : dict2dict_map[float(val)]
).to(tokens.device)
def reorder_tokens(tokens, lengths, eos):
# reorder source tokens so they may be used as reference for P(S|T)
return torch.cat((tokens.new([eos]), tokens[-lengths:-1], tokens[:-lengths]), 0)
def reorder_all_tokens(tokens, lengths, eos):
# used to reorder src tokens from [<pad> <w1> <w2> .. <eos>] to [<eos> <w1> <w2>...<pad>]
# so source tokens can be used to predict P(S|T)
return torch.stack([reorder_tokens(token, length, eos) for token, length in zip(tokens, lengths)])
def normalized_scores_with_batch_vocab(
model_decoder, features, target_ids, k, bsz, beam_size,
pad_idx, top_k=0, vocab_size_meter=None, start_idx=None,
end_idx=None, **kwargs):
"""
Get normalized probabilities (or log probs) from a net's output
w.r.t. vocab consisting of target IDs in the batch
"""
if model_decoder.adaptive_softmax is None:
weight = model_decoder.output_projection.weight
vocab_ids = torch.unique(
torch.cat(
(torch.unique(target_ids), torch.arange(top_k, device=target_ids.device))
)
)
id_map = dict(zip(vocab_ids.tolist(), range(len(vocab_ids))))
mapped_target_ids = target_ids.cpu().apply_(
lambda x, id_map=id_map: id_map[x]
).to(target_ids.device)
expanded_target_ids = mapped_target_ids[:, :].repeat(1, k).view(bsz*beam_size*k, -1)
if start_idx is not None and end_idx is not None:
expanded_target_ids = expanded_target_ids[start_idx:end_idx, :]
logits = F.linear(features, weight[vocab_ids, :])
log_softmax = F.log_softmax(logits, dim=-1, dtype=torch.float32)
intermed_scores = torch.gather(
log_softmax[:, :-1, :],
2,
expanded_target_ids[:, 1:].unsqueeze(2),
).squeeze()
not_padding = expanded_target_ids[:, 1:] != pad_idx
intermed_scores *= not_padding.float()
return intermed_scores
else:
raise ValueError("adaptive softmax doesn't work with " +
"`normalized_scores_with_batch_vocab()`")
|