Spaces:
Runtime error
Runtime error
Commit
•
1e93542
1
Parent(s):
259bd16
Update the template
Browse files
app.py
CHANGED
@@ -3,22 +3,24 @@ import numpy as np
|
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
8 |
|
9 |
if torch.cuda.is_available():
|
10 |
-
torch.
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
@@ -35,7 +37,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
35 |
generator = generator
|
36 |
).images[0]
|
37 |
|
38 |
-
return image
|
39 |
|
40 |
examples = [
|
41 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
@@ -46,21 +48,15 @@ examples = [
|
|
46 |
css="""
|
47 |
#col-container {
|
48 |
margin: 0 auto;
|
49 |
-
max-width:
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
-
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
gr.Markdown(f"""
|
62 |
# Text-to-Image Gradio Template
|
63 |
-
Currently running on {power_device}.
|
64 |
""")
|
65 |
|
66 |
with gr.Row():
|
@@ -103,7 +99,7 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
minimum=256,
|
104 |
maximum=MAX_IMAGE_SIZE,
|
105 |
step=32,
|
106 |
-
value=
|
107 |
)
|
108 |
|
109 |
height = gr.Slider(
|
@@ -111,7 +107,7 @@ with gr.Blocks(css=css) as demo:
|
|
111 |
minimum=256,
|
112 |
maximum=MAX_IMAGE_SIZE,
|
113 |
step=32,
|
114 |
-
value=
|
115 |
)
|
116 |
|
117 |
with gr.Row():
|
@@ -121,26 +117,26 @@ with gr.Blocks(css=css) as demo:
|
|
121 |
minimum=0.0,
|
122 |
maximum=10.0,
|
123 |
step=0.1,
|
124 |
-
value=0.0,
|
125 |
)
|
126 |
|
127 |
num_inference_steps = gr.Slider(
|
128 |
label="Number of inference steps",
|
129 |
minimum=1,
|
130 |
-
maximum=
|
131 |
step=1,
|
132 |
-
value=2,
|
133 |
)
|
134 |
|
135 |
gr.Examples(
|
136 |
examples = examples,
|
137 |
inputs = [prompt]
|
138 |
)
|
139 |
-
|
140 |
-
|
141 |
fn = infer,
|
142 |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
-
outputs = [result]
|
144 |
)
|
145 |
|
146 |
demo.queue().launch()
|
|
|
3 |
import random
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
+
#import spaces [uncomment to use ZeroGPU]
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
|
10 |
|
11 |
if torch.cuda.is_available():
|
12 |
+
torch_dtype = torch.float16
|
13 |
+
else:
|
14 |
+
torch_dtype = torch.float32
|
15 |
+
|
16 |
+
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
17 |
+
pipe = pipe.to(device)
|
|
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
+
#@spaces.GPU [uncomment to use ZeroGPU]
|
23 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
|
|
37 |
generator = generator
|
38 |
).images[0]
|
39 |
|
40 |
+
return image, seed
|
41 |
|
42 |
examples = [
|
43 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
|
|
48 |
css="""
|
49 |
#col-container {
|
50 |
margin: 0 auto;
|
51 |
+
max-width: 640px;
|
52 |
}
|
53 |
"""
|
54 |
|
|
|
|
|
|
|
|
|
|
|
55 |
with gr.Blocks(css=css) as demo:
|
56 |
|
57 |
with gr.Column(elem_id="col-container"):
|
58 |
gr.Markdown(f"""
|
59 |
# Text-to-Image Gradio Template
|
|
|
60 |
""")
|
61 |
|
62 |
with gr.Row():
|
|
|
99 |
minimum=256,
|
100 |
maximum=MAX_IMAGE_SIZE,
|
101 |
step=32,
|
102 |
+
value=1024, #Replace with defaults that work for your model
|
103 |
)
|
104 |
|
105 |
height = gr.Slider(
|
|
|
107 |
minimum=256,
|
108 |
maximum=MAX_IMAGE_SIZE,
|
109 |
step=32,
|
110 |
+
value=1024, #Replace with defaults that work for your model
|
111 |
)
|
112 |
|
113 |
with gr.Row():
|
|
|
117 |
minimum=0.0,
|
118 |
maximum=10.0,
|
119 |
step=0.1,
|
120 |
+
value=0.0, #Replace with defaults that work for your model
|
121 |
)
|
122 |
|
123 |
num_inference_steps = gr.Slider(
|
124 |
label="Number of inference steps",
|
125 |
minimum=1,
|
126 |
+
maximum=50,
|
127 |
step=1,
|
128 |
+
value=2, #Replace with defaults that work for your model
|
129 |
)
|
130 |
|
131 |
gr.Examples(
|
132 |
examples = examples,
|
133 |
inputs = [prompt]
|
134 |
)
|
135 |
+
gr.on(
|
136 |
+
trigger=[run_button.click, prompt.submit],
|
137 |
fn = infer,
|
138 |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
139 |
+
outputs = [result, seed]
|
140 |
)
|
141 |
|
142 |
demo.queue().launch()
|