|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import random |
|
import os |
|
|
|
def random_plot(): |
|
start_year = 2020 |
|
x = np.arange(start_year, start_year + random.randint(0, 10)) |
|
year_count = x.shape[0] |
|
plt_format = "-" |
|
fig = plt.figure() |
|
ax = fig.add_subplot(111) |
|
series = np.arange(0, year_count, dtype=float) |
|
series = series**2 |
|
series += np.random.rand(year_count) |
|
ax.plot(x, series, plt_format) |
|
return fig |
|
|
|
img_dir = os.path.join(os.path.dirname(__file__), "files") |
|
file_dir = os.path.join(os.path.dirname(__file__), "..", "kitchen_sink", "files") |
|
model3d_dir = os.path.join(os.path.dirname(__file__), "..", "model3D", "files") |
|
highlighted_text_output_1 = [ |
|
{ |
|
"entity": "I-LOC", |
|
"score": 0.9988978, |
|
"index": 2, |
|
"word": "Chicago", |
|
"start": 5, |
|
"end": 12, |
|
}, |
|
{ |
|
"entity": "I-MISC", |
|
"score": 0.9958592, |
|
"index": 5, |
|
"word": "Pakistani", |
|
"start": 22, |
|
"end": 31, |
|
}, |
|
] |
|
highlighted_text_output_2 = [ |
|
{ |
|
"entity": "I-LOC", |
|
"score": 0.9988978, |
|
"index": 2, |
|
"word": "Chicago", |
|
"start": 5, |
|
"end": 12, |
|
}, |
|
{ |
|
"entity": "I-LOC", |
|
"score": 0.9958592, |
|
"index": 5, |
|
"word": "Pakistan", |
|
"start": 22, |
|
"end": 30, |
|
}, |
|
] |
|
|
|
highlighted_text = "Does Chicago have any Pakistani restaurants" |
|
|
|
def random_model3d(): |
|
model_3d = random.choice( |
|
[os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != "source.txt"] |
|
) |
|
return model_3d |
|
|