import time import gradio as gr import atexit import pathlib log_file = pathlib.Path(__file__).parent / "cancel_events_output_log.txt" def fake_diffusion(steps): log_file.write_text("") for i in range(steps): print(f"Current step: {i}") with log_file.open("a") as f: f.write(f"Current step: {i}\n") time.sleep(0.2) yield str(i) def long_prediction(*args, **kwargs): time.sleep(10) return 42 with gr.Blocks() as demo: with gr.Row(): with gr.Column(): n = gr.Slider(1, 10, value=9, step=1, label="Number Steps") run = gr.Button(value="Start Iterating") output = gr.Textbox(label="Iterative Output") stop = gr.Button(value="Stop Iterating") with gr.Column(): textbox = gr.Textbox(label="Prompt") prediction = gr.Number(label="Expensive Calculation") run_pred = gr.Button(value="Run Expensive Calculation") with gr.Column(): cancel_on_change = gr.Textbox( label="Cancel Iteration and Expensive Calculation on Change" ) cancel_on_submit = gr.Textbox( label="Cancel Iteration and Expensive Calculation on Submit" ) echo = gr.Textbox(label="Echo") with gr.Row(): with gr.Column(): image = gr.Image( sources=["webcam"], label="Cancel on clear", interactive=True ) with gr.Column(): video = gr.Video( sources=["webcam"], label="Cancel on start recording", interactive=True ) click_event = run.click(fake_diffusion, n, output) stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event]) pred_event = run_pred.click( fn=long_prediction, inputs=[textbox], outputs=prediction ) cancel_on_change.change(None, None, None, cancels=[click_event, pred_event]) cancel_on_submit.submit( lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event] ) image.clear(None, None, None, cancels=[click_event, pred_event]) video.start_recording(None, None, None, cancels=[click_event, pred_event]) demo.queue(max_size=20) atexit.register(lambda: log_file.unlink()) if __name__ == "__main__": demo.launch()