Spaces:
Runtime error
Runtime error
File size: 8,951 Bytes
c2c05b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os, requests
import pdb
import copy
from tqdm import tqdm
import torch
from transformers import AutoTokenizer, PretrainedConfig, CLIPTextModel
from diffusers import AutoencoderKL, UNet2DConditionModel, DDPMScheduler
from diffusers.utils.peft_utils import set_weights_and_activate_adapters
from peft import LoraConfig
from .model import make_1step_sched
def my_vae_encoder_fwd(self, sample):
r"""The forward method of the `Encoder` class."""
sample = self.conv_in(sample)
l_blocks = []
# down
for down_block in self.down_blocks:
l_blocks.append(sample)
sample = down_block(sample)
# middle
sample = self.mid_block(sample)
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
self.current_down_blocks = l_blocks
return sample
def my_vae_decoder_fwd(self,sample, latent_embeds = None):
sample = self.conv_in(sample)
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
# middle
sample = self.mid_block(sample, latent_embeds)
sample = sample.to(upscale_dtype)
if not self.ignore_skip:
skip_convs = [self.skip_conv_1, self.skip_conv_2, self.skip_conv_3, self.skip_conv_4]
# up
for idx, up_block in enumerate(self.up_blocks):
skip_in = skip_convs[idx](self.incoming_skip_acts[::-1][idx])
# add skip
sample = sample + skip_in
sample = up_block(sample, latent_embeds)
else:
for idx, up_block in enumerate(self.up_blocks):
sample = up_block(sample, latent_embeds)
# post-process
if latent_embeds is None:
sample = self.conv_norm_out(sample)
else:
sample = self.conv_norm_out(sample, latent_embeds)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class TwinConv(torch.nn.Module):
def __init__(self, convin_pretrained, convin_curr):
super(TwinConv, self).__init__()
self.conv_in_pretrained = copy.deepcopy(convin_pretrained)
self.conv_in_curr = copy.deepcopy(convin_curr)
self.r = None
def forward(self, x):
x1 = self.conv_in_pretrained(x).detach()
x2 = self.conv_in_curr(x)
return x1*(1-self.r) + x2*(self.r)
class Pix2Pix_Turbo(torch.nn.Module):
def __init__(self, name, ckpt_folder="checkpoints"):
super().__init__()
self.tokenizer = AutoTokenizer.from_pretrained("stabilityai/sd-turbo",subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained("stabilityai/sd-turbo", subfolder="text_encoder").cuda()
self.sched = make_1step_sched()
vae = AutoencoderKL.from_pretrained("stabilityai/sd-turbo", subfolder="vae")
unet = UNet2DConditionModel.from_pretrained("stabilityai/sd-turbo", subfolder="unet")
if name=="canny_to_image":
lora_rank = 8
P_UNET_SD="/home/gparmar/code/single_step_translation/output/paired/canny_canny_midjourney_512_512/sd21_turbo_direct_edge_withskip_opt_lora_8_proj/l2_lpips_gan_vagan_clip_224_patch_multilevel_sigmoid/lr_5e-5_l2_0.25_lpips_1_0.1_CLIPSIM_1.0/1node_8gpu_no_BS_1_GRAD_ACC_2/checkpoint-7501/unet_sd.pkl"
P_VAE_ENC_SD="/home/gparmar/code/single_step_translation/output/paired/canny_canny_midjourney_512_512/sd21_turbo_direct_edge_withskip_opt_lora_8_proj/l2_lpips_gan_vagan_clip_224_patch_multilevel_sigmoid/lr_5e-5_l2_0.25_lpips_1_0.1_CLIPSIM_1.0/1node_8gpu_no_BS_1_GRAD_ACC_2/checkpoint-7501/sd_vae_enc.pkl"
P_VAE_DEC_SD="/home/gparmar/code/single_step_translation/output/paired/canny_canny_midjourney_512_512/sd21_turbo_direct_edge_withskip_opt_lora_8_proj/l2_lpips_gan_vagan_clip_224_patch_multilevel_sigmoid/lr_5e-5_l2_0.25_lpips_1_0.1_CLIPSIM_1.0/1node_8gpu_no_BS_1_GRAD_ACC_2/checkpoint-7501/sd_vae_dec.pkl"
unet_lora_config = LoraConfig(r=lora_rank, init_lora_weights="gaussian", target_modules=[
"to_k", "to_q", "to_v", "to_out.0", "conv", "conv1", "conv2", "conv_shortcut", "conv_out",
"proj_in", "proj_out", "ff.net.2", "ff.net.0.proj"]
)
if name=="sketch_to_image_stochastic":
# download from url
url = "https://www.cs.cmu.edu/~clean-fid/tmp/img2img_turbo/ckpt/sketch_to_image_stochastic.pkl"
os.makedirs(ckpt_folder, exist_ok=True)
outf = os.path.join(ckpt_folder, "sketch_to_image_stochastic.pkl")
if not os.path.exists(outf):
print(f"Downloading checkpoint to {outf}")
response = requests.get(url, stream=True)
total_size_in_bytes= int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
with open(outf, 'wb') as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
print("ERROR, something went wrong")
print(f"Downloaded successfully to {outf}")
# p_ckpt = "/home/gparmar/code/img2img-turbo/single_step_translation/notebooks/DEMO/sketch_to_image_stochastic.pkl"
p_ckpt = outf
sd = torch.load(p_ckpt, map_location="cpu")
unet_lora_config = LoraConfig(r=sd["rank_unet"], init_lora_weights="gaussian", target_modules=sd["unet_lora_target_modules"])
convin_pretrained = copy.deepcopy(unet.conv_in)
unet.conv_in = TwinConv(convin_pretrained, unet.conv_in)
vae.encoder.forward = my_vae_encoder_fwd.__get__(vae.encoder, vae.encoder.__class__)
vae.decoder.forward = my_vae_decoder_fwd.__get__(vae.decoder, vae.decoder.__class__)
# add the skip connection convs
vae.decoder.skip_conv_1 = torch.nn.Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
vae.decoder.skip_conv_2 = torch.nn.Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
vae.decoder.skip_conv_3 = torch.nn.Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
vae.decoder.skip_conv_4 = torch.nn.Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False).cuda()
vae_lora_config = LoraConfig(r=sd["rank_vae"], init_lora_weights="gaussian", target_modules=sd["vae_lora_target_modules"])
vae.decoder.ignore_skip = False
vae.add_adapter(vae_lora_config, adapter_name="vae_skip")
unet.add_adapter(unet_lora_config)
unet.load_state_dict(sd["state_dict_unet"])
unet.enable_xformers_memory_efficient_attention()
vae.load_state_dict(sd["state_dict_vae"])
unet.to("cuda")
vae.to("cuda")
unet.eval()
vae.eval()
self.unet, self.vae = unet, vae
self.timesteps = torch.tensor([999], device="cuda").long()
def forward(self, c_t, prompt, deterministic=True, r=1.0, noise_map=None):
# encode the text prompt
caption_tokens = self.tokenizer(prompt, max_length=self.tokenizer.model_max_length,
padding="max_length", truncation=True, return_tensors="pt").input_ids.cuda()
caption_enc = self.text_encoder(caption_tokens)[0]
if deterministic:
encoded_control = self.vae.encode(c_t).latent_dist.sample()*self.vae.config.scaling_factor
model_pred = self.unet(encoded_control, self.timesteps, encoder_hidden_states=caption_enc,).sample
x_denoised = self.sched.step(model_pred, self.timesteps, encoded_control, return_dict=True).prev_sample
self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor ).sample).clamp(-1,1)
else:
# scale the lora weights based on the r value
self.unet.set_adapters(["default"], weights=[r])
set_weights_and_activate_adapters(self.vae, ["vae_skip"], [r])
encoded_control = self.vae.encode(c_t).latent_dist.sample()*self.vae.config.scaling_factor
# combine the input and noise
unet_input = encoded_control*r + noise_map*(1-r)
self.unet.conv_in.r = r
unet_output = self.unet(unet_input, self.timesteps, encoder_hidden_states=caption_enc,).sample
self.unet.conv_in.r = None
x_denoised = self.sched.step(unet_output, self.timesteps, unet_input, return_dict=True).prev_sample
self.vae.decoder.incoming_skip_acts = self.vae.encoder.current_down_blocks
output_image = (self.vae.decode(x_denoised / self.vae.config.scaling_factor ).sample).clamp(-1,1)
return output_image
|